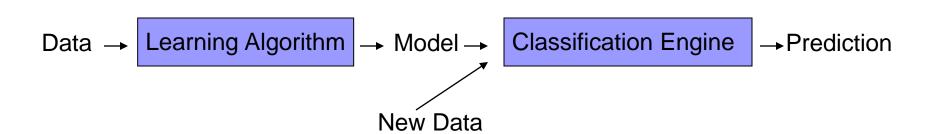
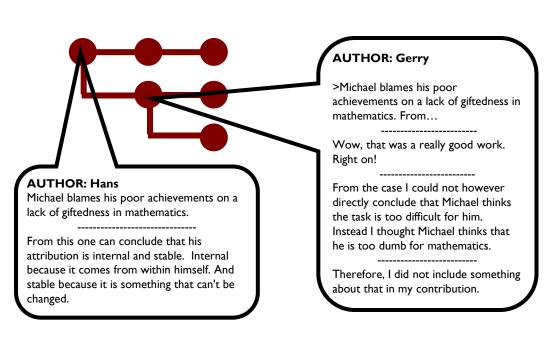


Discourse Analytics and Educational Data Mining

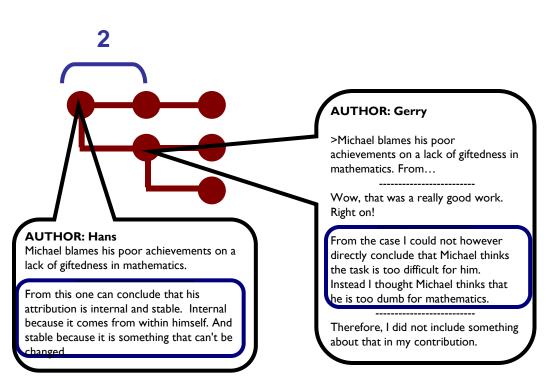

Carolyn Penstein Rosé

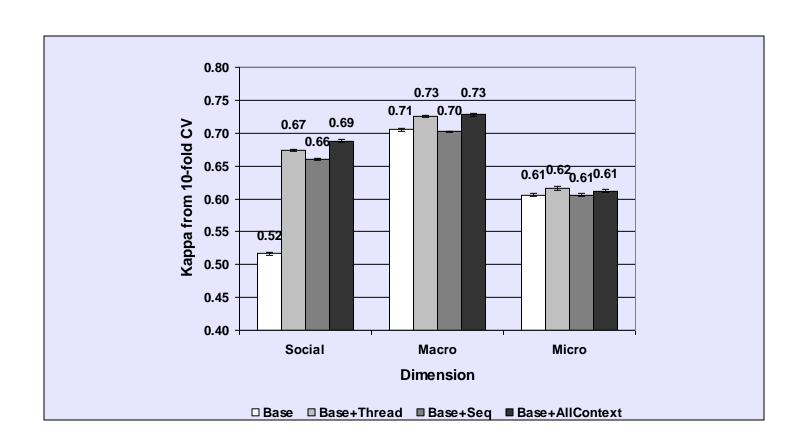
Language Technologies Institute/
Human-Computer Interaction
Institute

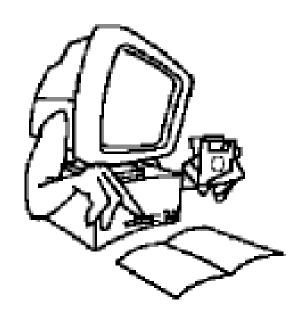

Overview of TagHelper Article Results

What is machine learning?

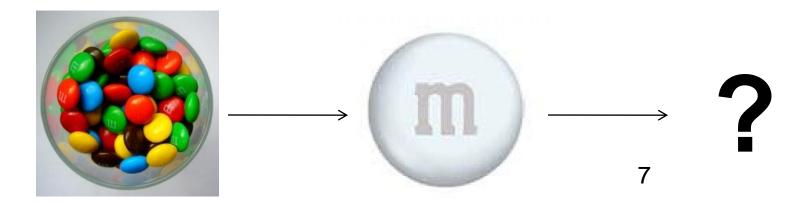
- Automatically or semi-automatically
 - □ Inducing rules from data
 - Making predictions




- Social modes of coconstruction (Weinberger & Fischer, 2006)
 - To what degree or in what ways learners refer to the contributions of their learning partners
- TagHelper tools achieves reliability of .69 Kappa (Rosé et al., 2008)

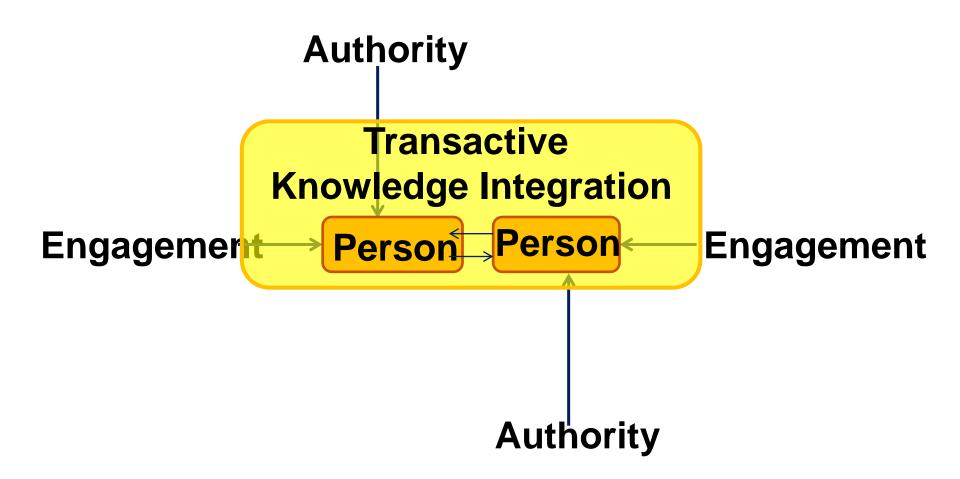


- Thread structure features
 - depth (numeric): the depth in the thread where a message appears
 - parent_child_similarity
 (numeric): semantic
 similarity (cosine
 similarity) between the
 current message segment
 to all its parent message
 segments. The highest
 value is chosen


Evaluating Context-Based Features

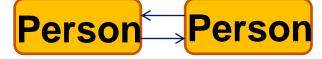
Important caveat!!

- Machine learning isn't magic
- But it can be useful for identifying meaningful patterns in your data when used properly
- Proper use requires insight into your data


Discussion Questions

- Do you believe the results from this paper are strong enough to convince you to use automated analysis in your work?
 - ☐ If not, what would you need to see?
- How would you summarize the issues with respect to reliability and validity when using automated coding in comparison with hand coding?
- In what specific ways could you imagine using automated coding in your own research?

SouFLé (part 1)


Transactivity

SouFLé Framework (Howley et al., 2013)

Souflé Framework

(Howley et al., in press)

- 3 Dimensions:
- □ Transactivity
- Engagement
- □ Authoritativeness

Souflé Framework

(Howley et al., in press)

Transactive
Knowledge Integration
Person
Person

- Definition of Transactivity
 - building on an idea expressed earlier in a conversation
 - using a reasoning statement

I think the tube will get heavier because water is going in That's true, but the important point is that water can flow in, but starch can't flow out.

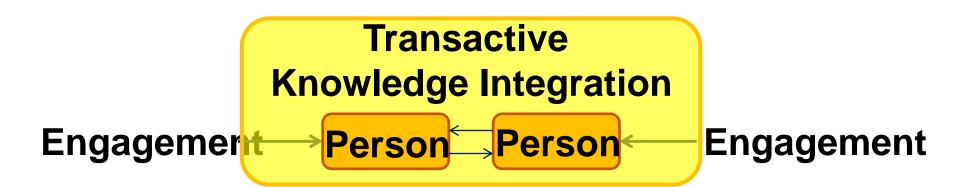
Transactivity (Berkowitz & Gibbs, 1983)

Findings

- Moderating effect on learning (Joshi & Rosé, 2007; Russell, 2005; Kruger & Tomasello, 1986; Teasley, 1995)
- □ Moderating effect on knowledge sharing in working groups (Gweon et al., 2011)

Computational Work

- Can be automatically detected in:
 - Threaded group discussions (Kappa .69) (Rosé et al., 2008)
 - Transcribed classroom discussions (Kappa .69) (Ai et al., 2010)
 - Speech from dyadic discussions (R = .37) (Gweon et al., 2012)
 - □ Predictable from a measure of speech style accommodation computed by an unsupervised Dynamic Bayesian Network (Jain et al., 2012)


			Reasoning	Transactivity
AUTHOR	TEXT	TIME		
Doctor Bob	Hi - I'm Doctor Bob, your instructor for today's lab.	05.07.13		
Sa04	Well bob, I hope you don't mind that I'm actively hostile to robots.	05.07.36		
Doctor Bob	You're working together, but you've each got a different design goal - it's at the top of	05.07.39		
Doctor Bob	Take a moment to share your goal with your partner.	05.07.42		
sa08	most environmentally friendly	05.08.00		
Sa04	my goal is to maximize power. yours?	05.08.10		
Doctor Bob	To help you meet your design goals, we are going to discuss some of the parameters	05.08.43		
Doctor Bob	Lets start with Tmax.	05.08.46		
sa08	so basically, we comprmise on greeness and power	05.10.53		
Doctor Bob	The heat rejected by the cycle increases by increasing Tmax.	05.11.13	Х	
Doctor Bob	We see this in Graph 3 of the worksheet.	05.11.16		
Doctor Bob	BTW: Is it safe to keep increasing Tmax?	05.12.17		
sa08	no	05.12.33		
Sa04	nope. you'll blow out your turbine	05.12.33	Χ	
	Good. Material properties constrain the maximum temperature we can use in a Cycle.			
Doctor Bob	For our cycle, Tmax cannot be more than 570C	05.12.39	Х	X
	Try using this understanding that our team now shares to come up with a potential value			
Doctor Bob	of Tmax (T @ S2) that will help you meet your objectives.	05.12.44		
sa08	We don't want it to be at 570 both for the material and [the environment]	05.12.48	X	X
	well, for power and efficiency, we want a high tmax, but environmentally, we want a			
sa08	lower one. It has to be higher than 410 for steam quality	05.14.03	Х	X
sa08	so somwhere between 410 and 570	05.14.26	Х	X
a08	what about right in the middle, what about 500?	05.14.40		
Sa04	seems reasonable	05.14.57		
sa08	We choose 500 degrees C	05.15.21		
	however, environmental friendliness can be increased by either increasing efficiency or			
Sa04	by reducing waste heat, so maybe it's better to just max out our temperature.	05.15.53	X	

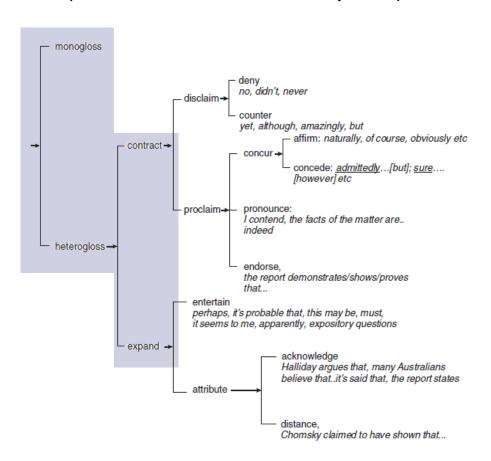
Discussion Questions

- How does the construct of transactivity relate to conversational or non-conversational constructs you have investigated in your own work?
- Based on your understanding of transactivity, which of the following would you expect to correlate with it and why:
 - □ Level of rapport within groups
 - Usage of dialect specific language features
 - ☐ Gesture and gaze
- How might non-linguistic and extra-linguistic features that correlate with transactivity be used in an automated conversation analysis approach?

SouFLé (part 2)

Engagement/Heteroglossia

System of Engagement


- Showing openness to the existence of other perspectives
- Less final / Invites more discussion

Example:

- [M] Nuclear is a good choice
- [HE] I consider nuclear to be a good choice
- [HC] There's no denying that nuclear is a superior choice
- [NA] Is nuclear a good choice?

Engagement

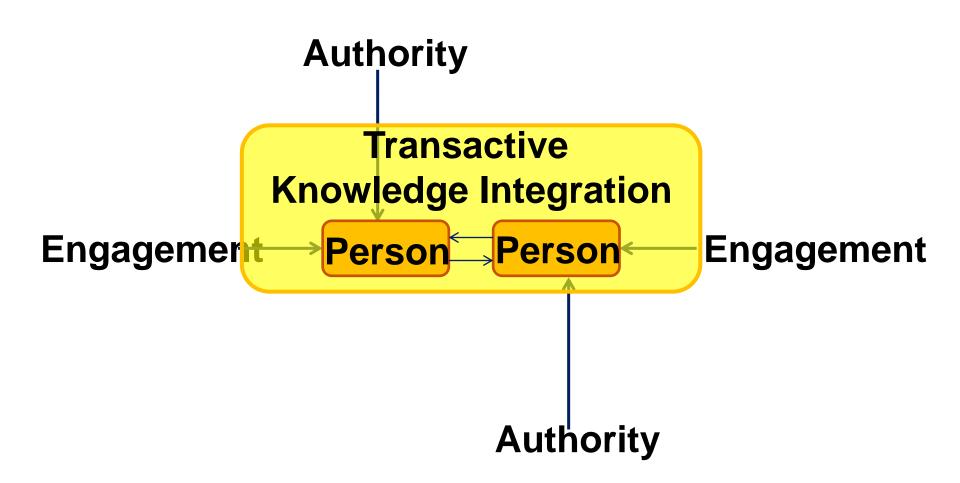
(Martin & White, 2005, p117)

Engagement (Martin & White, 2005)

Findings

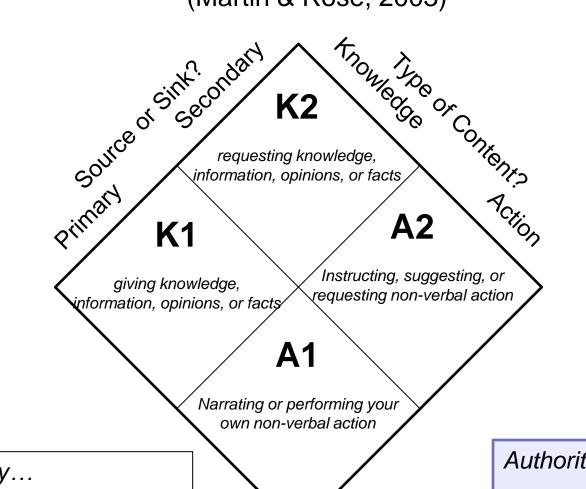
- □ Correlational analysis: Strong correlation between displayed openness of group members and articulation of reasoning (R = .72) (Dyke et al., 2013)
- Intervention study: Causal effect on propensity to articulate ideas in group chats (effect size .6 standard deviations) (Kumar et al., 2011)
 - Mediating effect of idea contribution on learning in scientific inquiry (Wang et al., 2011)

			Engagemen
AUTHOR	TEXT	TIME	
Doctor Bob	Hi - I'm Doctor Bob, your instructor for today's lab.	05.07.13	[M]ono
Sa04	Well bob, I hope you don't mind that I'm actively hostile to robots.	05.07.36	[HE]xpand
Doctor Bob	You're working together, but you've each got a different design goal - it's at the top of	05.07.39	[M]ono
Doctor Bob	Take a moment to share your goal with your partner.	05.07.42	
sa08	most environmentally friendly	05.08.00	[M]ono
Sa04	my goal is to maximize power. yours?	05.08.10	[M]ono
Doctor Bob	To help you meet your design goals, we are going to discuss some of the parameters	05.08.43	[M]ono
Doctor Bob	Lets start with Tmax.	05.08.46	
sa08	so basically, we comprmise on greeness and power	05.10.53	[M]ono
Doctor Bob	The heat rejected by the cycle increases by increasing Tmax.	05.11.13	[M]ono
Doctor Bob	We see this in Graph 3 of the worksheet.	05.11.16	[HE]xpand
Doctor Bob	BTW: Is it safe to keep increasing Tmax?	05.12.17	
sa08	no	05.12.33	[M]ono
Sa04	nope. you'll blow out your turbine	05.12.33	[M]ono
	Good. Material properties constrain the maximum temperature we can use in a Cycle.		
Doctor Bob	For our cycle, Tmax cannot be more than 570C	05.12.39	[M]ono
	Try using this understanding that our team now shares to come up with a potential value		
Doctor Bob	of Tmax (T @ S2) that will help you meet your objectives.	05.12.44	
sa08	We don't want it to be at 570 both for the material and [the environment]	05.12.48	[HE]xpand
	well, for power and efficiency, we want a high tmax, but environmentally, we want a		
sa08	lower one. It has to be higher than 410 for steam quality	05.14.03	[HE]xpand
sa08	so somwhere between 410 and 570	05.14.26	[M]ono
sa08	what about right in the middle, what about 500?	05.14.40	[HE]xpand
Sa04	seems reasonable	05.14.57	[HE]xpand
sa08	We choose 500 degrees C	05.15.21	[HE]xpand
	however, environmental friendliness can be increased by either increasing efficiency or		
Sa04	by reducing waste heat, so maybe it's better to just max out our temperature.	05.15.53	[HE]xpand


Discussion Questions

- How does the construct of Engagement relate to conversational or non-conversational constructs you have investigated in your own work?
- What might make Engagement easier or harder to recognize automatically than transactivity?

How would you explain the correlation between Engagement and articulation of Reasoning in discussions?


SouFLé (part 3)

Authoritativeness

The Negotiation Framework

(Martin & Rose, 2003)

Additionally...

Ch (direct challenge to previous utterance)

• (all other moves, backchannels, etc.)

Authoritativeness:

K1 + A2

K1 + K2 + A1 + A2

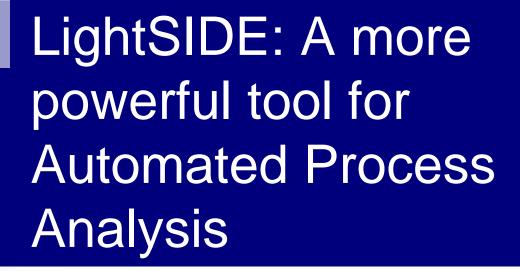
Authoritativeness (Martin & Rose, 2003)

Findings

- Authoritativeness measures display how students respond to aggressive behavior in groups (Howley et al., in press)
- □ Authoritativeness predicts learning (R = .64) and self-efficacy (R = .35) (Howley et al., 2011)
- Authoritativeness predicts trust in doctor-patient interactions (R values between .25 and .35) (Mayfield et al., under review)

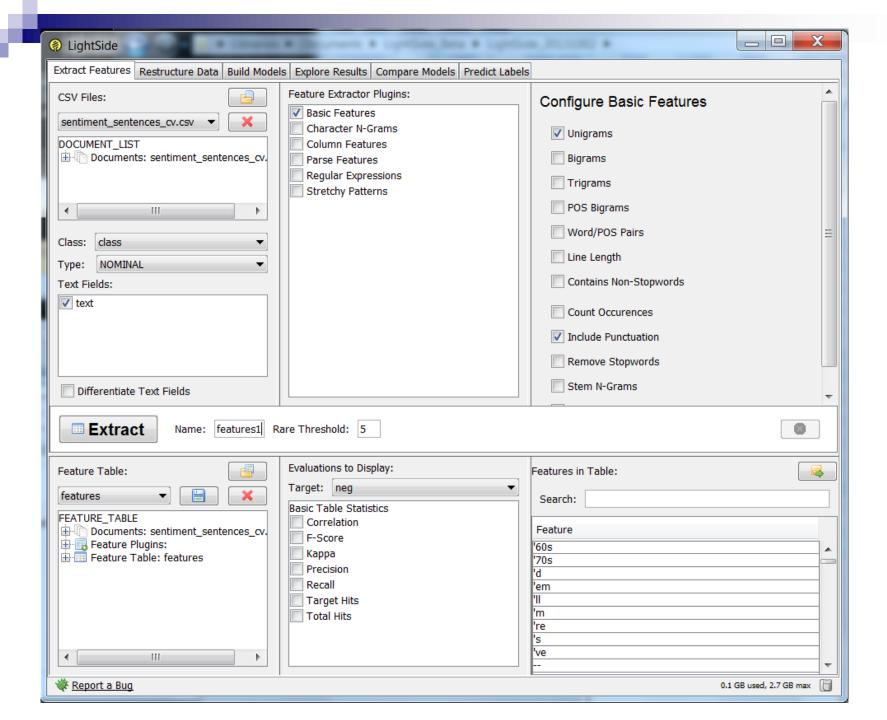
Computational Work

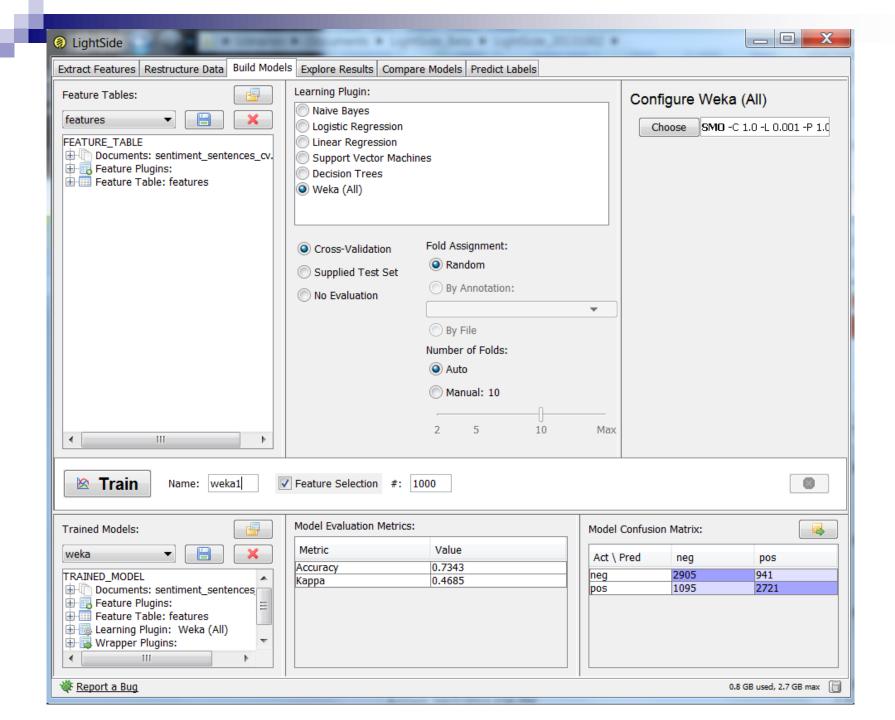
- \square Detectable in collaborative learning chat logs (R = .86)
- □ Detectable in transcribed dyadic discussions in a knowledge sharing task (R = .95) (Mayfield & Rosé, 2011)
- □ Detectable in transcribed doctor-patient interactions (R = .96) (Mayfield et al., under review)

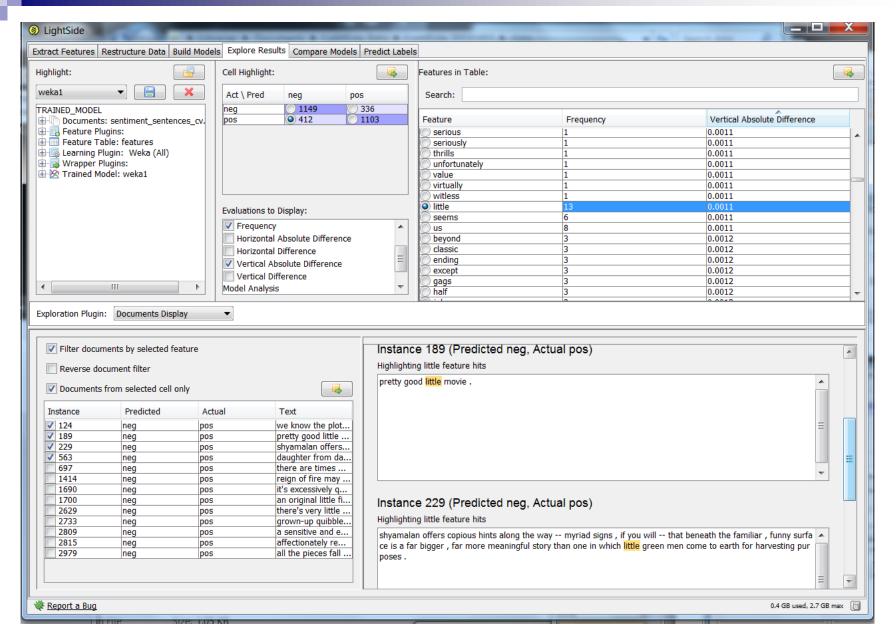

			Authority
AUTHOR	TEXT	TIME	
Doctor Bob	Hi - I'm Doctor Bob, your instructor for today's lab.	05.07.13	K1
Sa04	Well bob, I hope you don't mind that I'm actively hostile to robots.	05.07.36	K1
Doctor Bob	You're working together, but you've each got a different design goal - it's at the top of	05.07.39	K1
Doctor Bob	Take a moment to share your goal with your partner.	05.07.42	A2
sa08	most environmentally friendly	05.08.00	K1
Sa04	my goal is to maximize power. yours?	05.08.10	K1/ K2
Doctor Bob	To help you meet your design goals, we are going to discuss some of the parameters	05.08.43	K1
Doctor Bob	Lets start with Tmax.	05.08.46	A1
sa08	so basically, we comprmise on greeness and power	05.10.53	A1
Doctor Bob	The heat rejected by the cycle increases by increasing Tmax.	05.11.13	K1
Doctor Bob	We see this in Graph 3 of the worksheet.	05.11.16	K1
Doctor Bob	BTW: Is it safe to keep increasing Tmax?	05.12.17	О
sa08	no	05.12.33	K2
Sa04	nope. you'll blow out your turbine	05.12.33	K2
	Good. Material properties constrain the maximum temperature we can use in a Cycle.		
Doctor Bob	For our cycle, Tmax cannot be more than 570C	05.12.39	K1
	Try using this understanding that our team now shares to come up with a potential value		
Doctor Bob	of Tmax (T @ S2) that will help you meet your objectives.	05.12.44	A2
sa08	We don't want it to be at 570 both for the material and [the environment]	05.12.48	K1
	well, for power and efficiency, we want a high tmax, but environmentally, we want a		
sa08	lower one. It has to be higher than 410 for steam quality	05.14.03	K1
sa08	so somwhere between 410 and 570	05.14.26	K1
sa08	what about right in the middle, what about 500?	05.14.40	K1
Sa04	seems reasonable	05.14.57	О
sa08	We choose 500 degrees C	05.15.21	A1
	however, environmental friendliness can be increased by either increasing efficiency or		
Sa04	by reducing waste heat, so maybe it's better to just max out our temperature.	05.15.53	K1

м

Discussion Questions


- How does the construct of Authoritativeness relate to conversational or non-conversational constructs you have investigated in your own work?
- How would you explain the connection between Authoritativeness and Self-efficacy? Would you be surprised if there was a correlation in learning contexts but not for doctors in doctor-patient interactions?


What might explain the correlation between Authoritativeness and learning?



Automated analysis – Quick Tour

Any Questions?