Teacher Learning and Technology – a Learning Sciences Perspective

Mimi M. Recker Professor and Department Head October, 2013

Instructional Technology and Learning Sciences Emma Eccles Jones College of Education & Human Services

Teacher learning and LS

A long focus on:

• How and when teacher learning takes place

- Teachers' use of new technologies, and how they support teacher learning
- How do these lines of inquiry relate to your context?

CrowdTeaching: Supporting Teachers as Designers in Collective Intelligence Communities

Mimi M. Recker, Min Yuan, Lei Ye

Instructional Technology and Learning Sciences Emma Eccles Jones College of Education & Human Services

National Science Foundation

Paradigm Shifts

- Renewed interest in "Teachers as Designers"
- Widespread availability of Open Educational Resources
- Free, easy to use authoring tools
- Participatory Web culture, supporting collective intelligence:
 - Wikipedia, Linux, others?

Context: IA.usu.edu

My Resources: Search for and integrate OER
My Projects: Create, publish, view, copy IA projects

IA Projects

+ IA http://ia.usu.edu/viewproject.php?project=ia:17017

C Q- Google

Math and Science Activity Center EdinFormatics.com

Summer Camps

Budget Travel

😁 🛄 🎆 Apple Yahoo! Google Maps YouTube Wikipedia News (639) 🔻 Popular 🔻

Problem Presentation:

You and your friends have been camping. As you leave the camp site, you discover a very large tree has fallen on the trail. It is too large to climb over or go around. So, you take a different route, which leads you to a large lake. The only way to get to the other side is to go across it. Since there are no rafts around, you realize will need to build one. You see around you: bricks, logs, long, thick tree branches, metal tent poles, and shovels. Last year you learned about density and what helps objects float. You now need to figure out what objects will float and how density works.

Budent and Bardent Taval Barde

The box that has more balls has more mass per unit of volume. This property of matter is called density. The density of a material helps to distinguish it from

other materials. Since mass is usually expressed in grams and volume in cubic centimeters, density is expressed in grams/cubic centimeter.

Current Knowledge:

What are some things you already know about density in order to solver this problem? How could this information help you s

Information Sources:

You will need to gather more information about density so you can solve the problem of building the raft. Click on the link to discover more about density. <u>Interactive Density Game</u>

Continue with the next website that will give you more information about what density it and how to calculate density. Calculating Density Interactive Page

Information Seeking:

You should now have enough information to solve the problem with your friends at the lake and be able to build a raft. However, if you would like to read more about density on your own, you may do your own internet search. You can either use Google, or open another tab use a search engine of your choice. <u>Google website</u>

What Have You Learned?

At the start of this website, you were asked what you already know about density. I would like you to now share what you have learned about density by doing this activity.

What did you not know about density before that you know now? What resource helped you best understand what density is? Do you feel you have a better understanding of what density is?

Solution:

Your job now is to describe the best solution to the problem about building a raft. What materials are best to use and why? Are there objects that should NOT be used? Carefully explain your solution and why that is the best solution for this problem.

Reflection:

How did this activity better help you understand density? Were you able to come up with a reasonable solution to the problem? Explain how this activity will help you remember density in the future.

Forces of Motion

Answer the questions on a sheet of paper

http://teachertech.rice.edu/Participants/louviere/Newton/

IA Usage

Since 2005	N	12-month growth
Registered users	7,600	42%
IA projects created	17,600	58%
Online learning resources used	76,000	57%
IA project views	> 2.5 mil	66%

Collective Intelligence

Malone et al., 2009:

- What is the goal of the community? How do they do it?
 - Creating artifacts? Picking winners?
- Who is engaged in tasks?
 - Egalitarian crowd or hierarchy?
- Why do they engage in these tasks?
 - Money, glory?

Consider the previous examples: how do these different questions apply?

Create and Decide Dimensions in the Instructional Architect

Wh	at	Who	Why	How
Create	IA project	Teachers, individually	Motivate students; supplant and supplement textbook; increase efficiency	Create personal collection of IA projects
Decide	View IA project	Teachers, individually	Leverage wisdom of crowd, learn from peers and resources	View public IA projects
Decide	Copy IA project	Teachers, individually	Leverage wisdom of crowd, improve efficiency and effectiveness	Copy public IA projects to personal collection

Creating Shared Artifacts

Morris & Hiebert, 2011

- Continuous improvement is best supported by the creation of public and changeable knowledge artifacts in which participants jointly solve, share, and refine problems of practice.
- When artifacts are public and jointly created, multiple sources of innovations are possible, resulting in their incremental improvement.
- How does Collective Intelligence support this vision?

Research Questions

<u>Teachers</u>: How do teachers engage in CI activities within the IA?

<u>Artifacts</u>: How do teacher Collective Intelligence processes relate to *useful* IA projects?

Study Design

Dataset for RQ1

- 757 users who created an account during 1 year
- Of these, 200 indicated they were teachers
- Created 520 IA projects

Dataset for RQ2

- 36 middle school mathematics and science teachers
- Created 351 IA projects as part of PD
- Analyzed 2 from each (72) that were used in classrooms

Data Source Details

Data source	Description		
Teacher	Demographic data were collected via IA profiles created when teachers		
demographic	registered for an account in the IA, including self-reported years of		
data	teaching experience and comfort level with technology.		
Teacher usage	Automatically collected IA user data included number of: logins, total IA		
data	projects created, public IA projects created, and OER used.		
IA project data	Automatically collected IA project data included number of words, links,		
	and edits.		
Problem-based	IA projects created by PD participants were hand-scored by three raters,		
learning	using a refined problem-based learning rubric agreement. Possible scores		
alignment ranged from 0 to 22 points. Inter-rater reliability was high (ICC=.80			
score			
OAI score	IA projects created by PD participants were hand-scored by one rater		
	using the OAI rubric, with possible scores being Offload=1;		
	Adaptation=2; Improvisation=3. To measure inter-rater reliability, a		
	second coder scored a random subset. The resulting intra-class		
	correlation coefficient was.87, indicating high reliability.		

Evaluating CI Artifacts

Two measures:

Creating inquiry-based IA projects: Raters used PBL rubric with 11 elements in four categories rated on a 0-2 scale

Integrating OER into IA projects: Raters used "Offload to Adaptation to Improvisation" scale (Brown and Edelson, 2003)

Problem-Based Learning Alignment Rubric

Christmania	Not Decreat (0)	Europeire (1)	Durant (2)				
Criteria	Not Present (0)	Emerging (1)	Present (2)				
Authentic Problem							
Cross-disciplinary Content draws from a single Content		Content draws from two closely related	Content draws from a diverse set of disciplines, reflecting				
	discipline (e.g., statistics)	disciplines (e.g., statistics and algebra)	the kind of complexity found in real-life settings (e.g.,				
			statistics and rhetoric)				
Ill-structured	Learners are provided with	Learners are provided with parameters	Learners need to act within parameters and are faced with				
	clear directions	but need to make some decisions about	competing constraints, forcing a "satisficing" solution (e.g.,				
		how to proceed	students are asked to pick food that is cheap as well as				
D 11.0			healthy)				
Real Life	No ties to real-life practice	Attempted ties to real-life practice.	Learning is clearly fied to real-life practice. For example,				
		Something done by professionals, or	the problem is phrased in the first person for students, and				
		authentic for students.	they are given artifacts associated with the problem				
Begins with a	No contextual problem is	Learners are asked to solve a	Learners are asked to solve a contextual problem (problem				
problem	presented to learners	contextual problem (content first)	first, then content)				
		Learning Processes					
Learning Goals	Students play no role in	Students have limited choice about	Students choose the majority of what they learn				
	deciding what to learn	what to learn					
Resource Utilization	Learners are not prompted to	Learners are asked to search for	Learners are asked to search for resources or utilize provided				
	locate/use any resources	resources or utilize provided resources	resources. Additionally, they are encouraged to pay				
			attention to the quality of resources they find or use.				
Reflection	Learners are not asked to	Learners are asked to discuss what they	Learners are asked to discuss what they found and judge the				
	reflect	have found or judge the merits of their	merits of their own actions or the actions of their peers				
		own actions or the actions of their	1				
		peers					
		Facilitator					
Metacognition	Unclear exactly what	As part of the activity, facilitators	As part of the activity, facilitators focus their efforts on				
	facilitators do during the	engage in some meta-cognitive	providing meta-cognitive prompts (e.g., How helpful is your				
	activity	prompts	current line of reasoning? What do you need to do next?				
			Can you summarize our discussion to this point?)				
Information Source	Facilitators are primary source	Information comes partly from	Information is found primarily by learners. Sources include				
	of info. This comes either	facilitators and is partly found by	searching or distilling relevant information from a larger set				
	directly from the instructor or	learners	of provided materials.				
	from a mandated set of						
	materials.						
L corners interact in	The learning experience is done	Group Work	The majority of the learning is done in groups				
groups	individually	individually and parts are done as a	The majority of the learning is done in groups				
groups	marvidually	aroun	18				
		Lgroup	19				

Brown and Edelson's Continuum of Curriculum Use (OAI Scale)

Score	Name	Definition
1	Offload	Teachers provide links to OER with little additional teacher-created instructional guidance (e.g., no explanations or instructions). Use tends toward lists of links (perhaps with added navigational information).
2	Adaptation	A midpoint, with only some of the elements listed below.
3	Improvisation	Teachers link to OER as a starting point or reference but have clearly designed their own elements, for example, learning goals, instructional activities, descriptions of resource use, or assessment items.

RQ1: Descriptives of Teachers' (N=200) Activity and Their IA Project Features (Data Collected Over a 1-Year Period)

	Variable	Mean	Median	SD	Min	Max
IA projects	# of words	186.02	94	308.02	0	2692
features (N=520)	# of links	4.23	3	4.17	5	28
	# of edits	2.87	2	3.29	0	21
	# of logins	10.38	7	10.59	1	57
	# of OER used in all IA projects	16.82	10	24.02	0	217
Teacher	# of IA projects created	2.6	2	2.04	1	10
activities (N=200)	# of public IA projects created	1.73	1	1.95	0	10
	# of IA projects copied from others	.58	0	1.46	0	9
	% of IA projects copied from others	15.22	0	29.50	0	100
	# of IA projects viewed	12.98	7	17.44	0	134

Histogram of teachers' (N=200) number of logins over a 1-year period

Teachers' (N=200) creation activity categorized by their comfort level with technology

Teachers' (N=200) creation activity categorized by their teaching experience

Summary of RQ1

- Varying levels of teacher activity (zipf),
- Somewhat mediated by comfort with technology, but not teaching experience
- More consuming (viewing) than producing
- More viewing than copying
 - Participation inequality

What projects are valued in the IA community? How do we know?

 Examine IA project alignment with 1) inquiry learning and 2) use of OER

RQ2: Descriptives of Users' (N=36) Activity and IA Project Features (Data Collected over a 1-yearPeriod)

	Variable	Mean	Median	SD	Min	Max
IA	PBL Alignment Score	3.32	2	3.45	1	17
	# of words	169.86	113.50	168.28	9	859
project	# of links	5.36	4	4.50	0	37
features	# of edits	69.94	51	63.70	5	388
(N=72)	# of times viewed $(N = 51)^*$	336.84	199	391.96	13	1995
	# of times copied $(N = 51)^*$	0.47	0	.95	0	4
Teacher activities (N=36)	# of logins	31.42	27	28.02	6	179
	# of resources used in all IA projects	33.72	23	31.39	8	179
	# of IA projects created	9.50	7	9.07	2	57
	# of public IA projects created	4.08	3	7.98	0	49
	# of IA projects copied from others	2.25	1	2.78	0	12
	% of IA projects copied from others	25.49	18.33	25.78	0	80
	# of IA projects viewed	20.39	21	11.86	2	52

Note: * Only public IA projects can be viewed and copied

Correlations between IA project features, PBL and OAI Scores

Note: * *p*< .05; ** *p* < .01

Summary of RQ2

- "In the wild" users showed overall lower levels of activity
- Two key IA project features (# of views and # of words) were significant and positive predictor of PBL alignment score
- No teacher characteristics correlated with PBL alignment or OAI score
- Two key IA project usage features (# of copies and # of words) were significant and positive predictor of OAI score

Conclusions

Indirect proxy of utility: •# of words •# of views •# of times copied Scaffolds in the IA interface could better represent these utility proxy to better leverage crowd wisdom Limitation: small number of teachers and small number of IA projects

"Good artists copy, great artists steal" -- stolen from Picasso

Questions?

mimi.recker@usu.edu