
How to Statistically Model Processes? Statistical discourse analysis

Ming Ming Chiu

University at Buffalo, State University of New York mingchiu@buffalo.edu

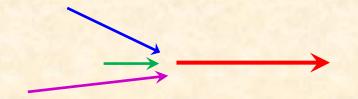
Ask questions via CHAT

Feel free to ask questions at any time.

To reduce your wait time,

Type your questions into the chat.

Types of Research Questions?


What affects people's actions/processes?

- One student's use of strategies across problems?
- Teachers' sequences of lessons and reflections?
- Classroom conversations?

Choose a research question to explore

How would you address the following issues?

How to Statistically Model Processes?

- Predict whether an action occurs or not
- Smaller unit of analysis
- Analyze time
- Contextual differences
- Complex codes, Missing data, Rare events...

Predict Whether an Action Occurs

- "Is vs. is not" (0 vs. 1) variables
 - Use strategy vs. not
 - Reflect on student motivation vs. not
 - Ask question vs. not Use Logit / Probit

• Predicting many actions?

Use Multivariate Logit / Probit

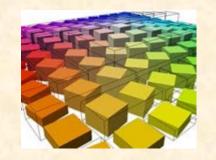
Smaller Unit of Analysis

- Unit smaller than individual
 - Strategies of students
 - Reflective notes of teachers
 - Conversation turns of people
- Increase sample size
- Use Multi-level analysis

(aka Hierarchical Linear Modeling)

Analyze Time

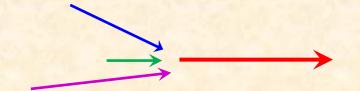
- Statistically identify critical moments that divide a session into distinct time periods
 - Use Breakpoint analysis
- How do sequences of actions/events affect the likelihood of a subsequent event? $a, b, c \rightarrow d$?
 - Micro-time context effects
 - Use Vector Auto-Regression (VAR) and Serial correlation test
- Causal mechanisms $A \rightarrow B \rightarrow C$
 - Use Multilevel mediation tests or Structural Equation Modeling


Contextual Differences

- Different contexts
 - Micro-time contexts/recent actions
 - Different groups and individuals
 - Different time periods
 - Different settings
- Test Cross-level interactions via

Multilevel Slope/Intercept Random Effects₈

Other Issues


 Model complex categories with *Multi-dimensional coding*

- Model rare actions/events
 with Logit bias estimator

How to Statistically Model Processes?

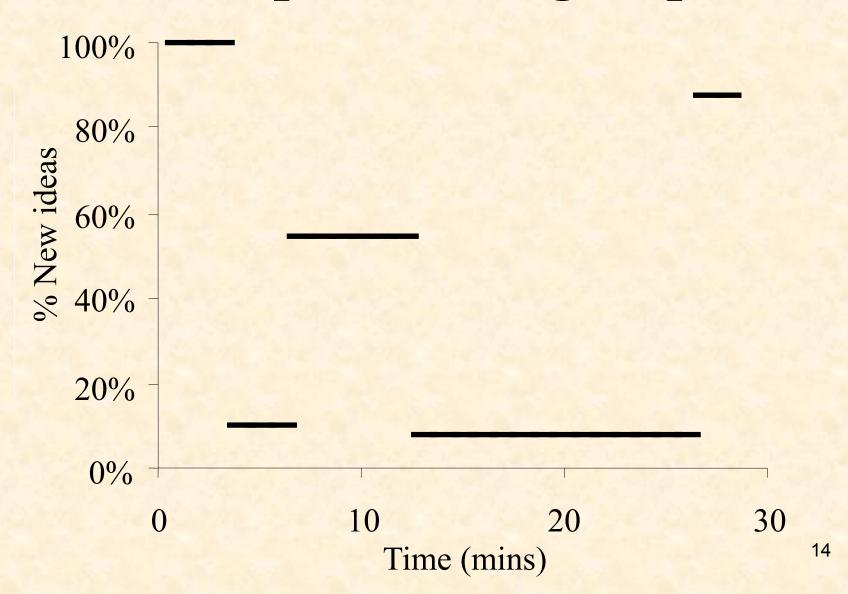
- Predict whether an action occurs or not
- Smaller unit of analysis
- Analyze time
- Contextual differences
- Complex codes, Missing data, Rare events...

Thank You!

4 types of Analytic Difficulties

- Time
- Outcomes
- Explanatory variables
- Data set

Difficulties regarding Time


• Time periods differ $(T_2 \neq T_4)$

Strategies

Breakpoint analysis

• Serial correlation $(t_8 \rightarrow t_9)$

Breakpoints in 1 group

Difficulties regarding Time

• Time periods differ $(T_2 \neq T_4)$

Strategies

- Breakpoint analysis
- Multilevel analysis (MLn, HLM)

- Serial correlation $(t_8 \rightarrow t_9)$
- Test with Q-statistics
- Model with lag outcomes
 e.g. Justify (-1)

Outcome Difficulties

Strategies

• Discrete outcomes (Yes / No)

• Logit / Probit

• Multiple outcomes (Y₁, Y₂) New idea & Justify Multivariate, multilevel analysis

Explanatory model Difficulties

- People & Groups differ † ≠ †
- Mediation effects $(X \rightarrow M \rightarrow Y)$
- False positives (+ + ♥ +)
- Effect across turns $(X_6 \rightarrow Y_9)$

Effects across several turns

Ben: 10 times 18 is 2 speakers ago = (-2)

Eva: 28. 1 speaker ago = (-1)

Jay: Wrong, 180 dollars.

Explanatory model Difficulties

- People & Groups differ † ≠ †
- Mediation effects $(X \rightarrow M \rightarrow Y)$
- False positives (+ + ♥ +)
- Effect across turns $(X_6 \rightarrow Y_9)$

Strategies

- Multilevel cross-classification
- Multilevel mediation tests
- 2-stage linear step-up method
- Vector Auto-Regression (VAR)
 Lag explanatory variables
 e.g., Disagree (-1), Girl (-1)
 Disagree (-2)

Data Difficulties

• Missing data (101?001?10)

Robustness

Strategies

- Markov Chain Monte Carlo multiple imputation
- Separate outcome models
- Use data subsets
- Use original data

Content analysis

Jay: A hundred eighty dollars.

Ben: If we multiply by ten cents, don't we get a hundred and eighty cents?

• Ben

- Disagrees politely
- New information
- Correct
- Justifies
- Question

Multi-dimensional Coding

Evaluation of the previous action

Agree (+), Neutral (Ø), Ignore/New topic (*),
Disagree rudely (—), Disagree politely (–)

Knowledge content regarding problem

- New idea (N), Old idea (O), Null-content ({})
- Validity
 - Correct (√), Wrong (X), Null-content ({})

Justification

- Justify (J), No justification ([]), Null-content ({})

Invitation to participate

- Command (!), Question (?), Statement (_.) 22

Invitational Form Decision Tree

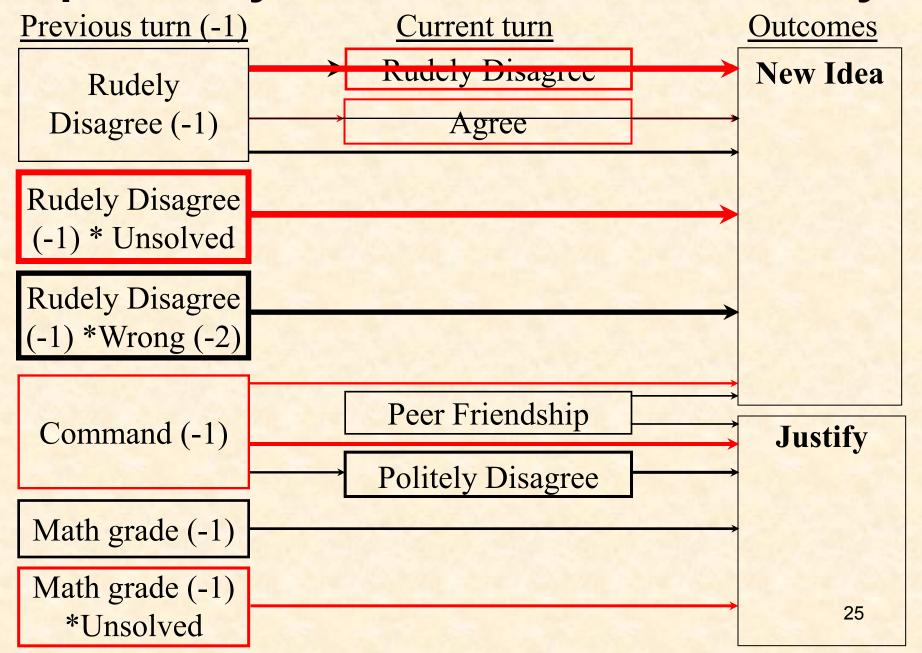
Minimize Number of Coding Decisions to 1 inter-coder reliability

- Minimize Depth of decision tree
- Put highly likely actions at the top

Do any of the clauses proscribe an action?

- Yes, code as <u>command</u> (*imperative*)
- No, is the subject the addressee?
 - No, are any of the clauses in the form of a question?
 - No, code as statement (declarative)
 - Yes, code as <u>question</u> (*interrogative*)
 - Yes, is the verb a modal?
 - No, should the described action have been performed, but not done?
 - Yes, code as a command
 - No, code as a question
 - Yes, Is it a Wh- question (who, what, where, why, when, how)?
 - Yes, code as an question
 - No, is the action feasible?
 - Yes, code as a command
 - No, code as an question

23


A 1	4 0 1	D. CC	11.4
Anal	vtical	l Diffi	CHITY
1 MIII COL	y creat		Cuity

- Differences across topics
- Time periods differ $(T_2 \neq T_4)$
- Serial correlation $(t_8 \rightarrow t_9)$
- Parallel talk $(\rightarrow \rightarrow \Rightarrow \Rightarrow)$
- Discrete outcomes (Yes / No)
- Multiple outcomes (Y₁, Y₂)
- Infrequent outcomes (00010)
- People & Groups differ † ≠ †
- Mediation effects $(X \rightarrow M \rightarrow Y)$
- False positives (+ +♥+)
- Missing data (101?001?10)
- Robustness

Strategy

- Multilevel analysis
- Breakpoint analysis & Multilevel analysis
- I² index of Q-statistics; Model with lag variables
- Store path: ID prior turn, Vector Auto-Regression
- Logit / Probit
- Multivariate outcome models
- Logit bias estimator
- Multilevel analysis
- Multilevel mediation tests
- 2-stage linear step-up procedure
- Markov Chain Monte Carlo multiple imputation
- Separate outcome models;
 Data subsets & unimputed data

Explanatory model: New Idea & Justify

Mathematics

Bayesian Information Criterion

$$-\frac{2L}{n} + \left(\frac{k\ln(n)}{n}\right)$$

Regression specification

$$\pi_{ijk} = F(\beta_0 + f_{0jk} + g_{00k} + \beta_{00s}S_{00k} + \beta_{00t}T_{00k} + \beta_{ujk}U_{ijk} + \beta_{vjk}V_{(i-1)jk} + \phi_{vjk}V_{(i-2)jk} + \gamma_{vjk}V_{(i-3)jk} + \eta_{vjk}V_{(i-4)jk})$$