
Correct contributions 
1 

Running head:  Correct contributions 
 

 
Flowing toward correct contributions during group problem solving: 

A statistical discourse analysis 
 
 

Ming Ming Chiu 
SUNY - Buffalo 

 
May 4, 2008 

 

Abstract 
 This study tested whether groups that created more correct ideas (correct contributions 
or CCs) or more clusters of CCs were more likely to solve a problem. Also, it tested whether 
students' recent actions (micro-time context) aided CC creation. Specifically, did new ideas, 
argumentation (evaluations, questions, and justifications), politeness, or status differences 
affect the likelihood of a CC?  
 Eighty high school students worked in groups of 4 on an algebra problem. Groups with 
higher mathematics grades or more CCs were more likely to solve the problem, but the number 
of clusters of CCs was unrelated to the solution outcome.  

A tool for analyzing individual or group processes, dynamic multilevel analyses 
(DMA) modeled the groups’ 2,951 conversation turns. It statistically identified watersheds 
(breakpoints) that divided each group’s conversation into distinct time periods with many CCs 
vs. few CCs.  Wrong contributions, correct evaluations of one another's ideas, justifications, 
and polite disagreements increased the likelihood of a CC, while questions, rude disagreements, 
and agreements reduced it. Status differences were not linked to CCs. Students recognized 
flaws in wrong contributions and used them to build CCs.  Compared to incorrect evaluations, 
correct evaluations increased the likelihoods of CCs, justifications, and subsequent correct 
evaluations. A justification often yielded a subsequent justification and reduced the likelihood 
of a rude disagreement. Justifications had the largest effects, while correct evaluations' effects 
lasted 3 speaker turns. Some effects differed across groups or across time periods. In groups 
that solved the problem, justifications were more likely to yield CCs, and questions were more 
likely to elicit explanations. Meanwhile, agreements' and correct evaluations' effects on correct 
contributions differed across time periods. Applied to practice, teachers can encourage students 
to explain their answers to group members’ questions, express and justify their own ideas, and 
evaluate others' ideas carefully and politely.   
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Flowing toward correct contributions during group problem solving: 
A statistical discourse analysis 

  
Students who work together often show many positive outcomes, including more 

learning, greater motivation, less racial tension, etc. (Johnson & Johnson, 2002; Slavin, 1990; 
Webb & Palincsar, 1996). However, these positive results are not universal (e.g., Barron, 2003). 
Why are some groups more successful than others?  

Earlier researchers used group structures and group member traits to explain different 
outcomes, while recently researchers have focused on group processes. Theoretical models of 
group problem solving highlight the importance of group members' new ideas (contributions), 
especially correct ones (correct contributions or CCs), as the building blocks of successful 
outcomes (e.g., Chiu, 2000a, 2001; Hinsz, Tinsdale & Vollrath, 1997).  This raises the issue of 
how group member properties and actions affect the process of creating CCs and whether these 
effects differ across groups or across time periods within each group.  

Case studies of group problem solving showed that diverse views and argumentation 
affect the creation of CCs (Cobb, 1995), and past studies showed that status and public 
self-image concerns are linked to group problem solving actions (Dembo & McAuliffe, 1987). 
Extending this line of research, I statistically modeled the temporal development of group 
processes, specifically how sequences of micro-processes (micro-time context) helped or 
hindered creation of CCs during group problem solving in high school algebra classrooms (cf. 
Mercer, 2008).    

This study contributes to the research literature in four ways. First, I statistically 
identify distinct time periods and analyze whether CCs occur uniformly throughout a 
problem-solving session or cluster within specific time periods. Second, I examine how prior 
speakers' actions (e.g., evaluations, ideas, justifications, and rudeness) and interactions create a 
micro-time context that affects the likelihood of creating a CC.  Third, I test whether the above 
effects differ for groups with correct solutions vs. those with incorrect solutions. Lastly, I apply 
a new statistical method to address the above research questions, dynamic multilevel analysis 
(DMA, Chiu & Khoo, 2005). As CCs are central to correct solutions, understanding when they 
occur and the factors that affect their creation can help educators improve students' group 
problem solving.   

Group Problem Solving Processes 
Past research suggests that groups with more CCs are more likely to solve a problem 

correctly than other groups (functional theory of group decision-making, e.g., Orlitzky & 
Hirokawa, 2001). Let us call this hypothesis H-1. (Hypotheses are numbered according to their 
level of analysis [group: 1; time period: 2; speaker turn: 3]). 

 
 Hypothesis H-1. Groups with more CCs are more likely to solve the problem  

correctly. 
 

Successful group problem solving might yield more clusters of CCs via diverse ideas and 
argumentation (Amason, 1996; Cobb, 1995).  However, rude arguments might hinder CCs and 
group problem solving, especially arguments centered on status struggles. This study 
investigated CCs by examining whether they clustered together and by identifying group 
problem solving processes that helped or hindered the creation of CCs. 
Clusters of CCs in time periods 
 Several researchers claim that group problem solving tends to be more successful if a 
group steps through each formal problem solving phase in order (phase model) such as (a) 
clarify the problem, (b) discuss criteria, (c) propose solutions, and (d) evaluate proposals (Ellis 
& Fisher, 1994; Pavitt, 1993). In such a model, components of a correct solution are split across 
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the different phases. Thus, group members likely voice correct and incorrect ideas at each stage 
(barring an algorithmic march to a correct solution). Hence, successful groups with multiple 
phases might tend to have clusters with many CCs alternating with clusters with few CCs. 

However, groups often do not step through each phase (Hirokawa, 1983; Pavitt & 
Johnson, 2001). Instead, many groups prefer to discuss one solution proposal in full, then 
another, and so on (reach-testers; Pavitt & Johnson, 2001). These reach-tester groups might 
have all CCs clustered around the correct proposal and incorrect ideas elsewhere, yielding only 
one or two distinct time periods.  As phase model groups are more likely to be successful than 
reach-tester groups, CCs might occur in more clusters in successful groups rather than in 
unsuccessful ones, especially for difficult problems. 
 
 Hypothesis H-2.  CCs occur in many clusters in successful groups,  

but in fewer clusters in unsuccessful groups. 
 

Group problem solving actions that help create CCs 
Compared to individuals, group members' diverse perspectives and argumentation 

might create more CCs (Cobb, 1995; Paulus & Brown, 2003). Diverse points of view can help 
a group create more ideas and judge them more accurately compared to individuals (Paulus & 
Brown, 2003).  
 New ideas. Group members often have diverse perspectives and sources of knowledge 
(Stasser, 1992). Capitalizing on this diversity, groups (especially heterogeneous ones) often 
create many ideas, representations, and solution proposals, thereby raising the likelihood that at 
least one of their ideas is correct/optimal (Paulus & Brown, 2003). 
 Group members can express idiosyncratic ideas and build on them to create new 
alternatives through processes such as sparked ideas, jigsaw pieces, and creative 
misinterpretations (Paulus & Brown, 2003; Chiu, 1997). Comments by one person (e.g., a key 
word) might spark another person to activate related concepts in his or her semantic network 
and propose a CC (Nijstad, Diehl, & Stroebe, 2003). Or, two or more members can put together 
different pieces to construct a CC, like fitting jigsaw pieces together (Chiu, 1997). Finally, a 
person might misinterpret a group member's incorrect idea to create a new, correct one (Chiu, 
1997). Thus, even wrong contributions can lead to CCs.  
 Group members' diverse views also help them recognize flaws, refine these incorrect 
ideas, and create CCs (Cobb, 1995; Piaget, 1985). Groups with diverse views might create 
more wrong ideas, but their diverse views also improve their judgment of their validity.  Hence, 
they can detect and correct these flaws to create CCs. This contrasts with the view that people 
primarily build on correct ideas and that wrong ideas often lead the group astray (see the long 
middle column of Figure 1, which summarizes the hypotheses and their relationships). 
 
 Hypothesis H-3a.  Contributions, including wrong contributions, help create CCs. 
 

Argumentation. Successful group problem solving often involves argumentation in the 
cognitive/problem content space (Roschelle, 1992), a social process by which people explain 
and justify their own views to convince both themselves and others (Amason, 1996; Cobb, 
1995). During this process, group members evaluate one another's ideas, detect flaws, and 
justify their ideas (Cobb, 1995; Kuhn, Shaw & Felton, 1997). These argumentation processes 
can help students develop their understanding of the specific content (e.g., algebra's structural 
relationships among equality, arithmetic operations, and properties of number, Kieran, 1992). 
 Evaluations characterize how a person assesses the previous speaker’s action and 
problem solving approach (functional theory of group decision-making, e.g., Chiu, 2000a, 
2001; Orlitzky & Hirokawa, 2001). For example, Sean says “three times four is seven.”  Maya 
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can agree (“uh-huh”), use a neutral action (“what did you say?”), disagree (“nope, you’re 
wrong”), or change the topic (“when is class over?”).  While agreements continue the current 
problem-solving trajectory, disagreements and changes of topic try to change the trajectory 
(Chiu, 2001). Hence, these evaluations reflect the accountability of a person’s ideas and actions 
to his or her learning community, to its collective knowledge, and to its local standards of 
reasoning (e.g., validity of transformations among equivalent algebraic expressions, Michaels, 
O'Connor, & Resnick, in press).  
 
Group properties before the       

group problem solving session  Group Problem     

  Solving Processes  Correct   

Girl (ns)    Contribution  Group  

Race (ns)  H-3a) New ideas    Solution 

Past algebra grade (+)  Wrong contribution (+)    Score 

Relative algebra grade/status (+)       

Peer status (+)  H-3b) Argumentation     

  Correct evaluation (+)     

H-3d) Status effects  Question (+ or – ?)     

Algebra grade variance (–)  Justification (+)     

Peer status variance (–)       

  H-3c) Face and Rudeness     

  Polite disagreement (+)     

  Rude disagreement (–)     

  Agreement  (–)     

  Command (–)     

 
Figure 1. Model of the effects of student and group properties before and during the group 
problem solving process on the outcome variables correct contributions and on group solution 
score (symbols in parentheses indicate expected direction of relationship with the outcome 
variables: positive [+], negative [–], or not significant [ns]). 
 

Evaluations can also be right or wrong in many contexts (e.g., high school algebra). 
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Correct evaluations support correct ideas (“three times four is twelve, right”) or identify flawed 
ideas (“no, three times four is not seven,”), thereby creating a foundation of partially shared 
understandings of correct ideas that group members can use to build new CCs. In contrast, 
incorrect evaluations reject CCs (“nope, five times two isn’t ten,”) or accept flawed ideas 
(“three times four is seven, yeah”), embedding flaws in their partially shared understandings.  
Group members using these partially shared understandings can carry these flaws into their 
new ideas, resulting in more wrong contributions and fewer CCs. A group's collective attention 
and diverse perspectives can help it evaluate ideas correctly and create a partially-shared 
foundation of understanding to aid creation of CCs (see Figure 1, middle column; Hinsz, 1990; 
Cobb, 1995). 
 According to socio-cognitive conflict theory, group members can recognize problems 
or difficulties (perturbations), express them through disagreements or questions, and address 
them to improve their understanding (Doise, Mugny and Perret-Clermont, 1975; Piaget, 1985). 
Piaget (1985) defines two types of perturbations: (a) obstacles, which give negative feedback 
and (b) lacunae, gaps in understanding. Thus, disagreements can identify obstacles (e.g., "no, 
that’s wrong, three times four isn’t seven") and motivate the need to create CCs.  

Meanwhile, a question (e.g., Juan asks, "how do we find the speed?") can indicate an 
individual gap or a group gap. For an individual gap, other group members who know the 
answer can explain it.  Thus individual gap questions invite explanations that often review 
previous ideas rather than create new CCs. In contrast, no one knows the answer to a group gap 
question, which motivates the need for a CC and points to a new direction for creating it. By 
expressing their ideas and explanations, students open up their reasoning for group members to 
analyze and discuss (Franke, Carpenter, & Battey, 2007). De Lisi and Goldbeck (1999) argue 
that group members' diverse perspectives and levels of knowledge facilitate both perturbations 
and responses to them. In short, these perturbations can motivate and inform creation of more 
CCs (see Figure 1, middle column). 
 Both disagreements and questions invite justifications that establish an idea's validity 
within their local classroom community's negotiated norms for a specific content area (e.g., 
algebraic relationships and mathematics proofs, Balacheff, 1988). Chiu and Khoo (2003) 
showed that members of successful groups often anticipated criticisms and justified their new 
ideas. Likewise, after a person disagrees with a proposal (e.g. Maya), the original proposer 
(Sean) might justify it by linking it to data, using a warrant, or supporting a warrant with 
backing (Toulmin, 2003). Along with appeals to external authorities (e.g., teacher, textbook), 
mathematics also allows students to build on example-based justifications by generalizing 
them to create principled, internal justifications of structural relationships within a closed 
system (Sowder & Harel, 1998). In response, other members can give different views and 
justifications (Piaget's, 1985, genuine argument). Similarly, when Juan shows a gap in 
understanding by asking a question, other members can respond with explanations and 
justifications (Coleman, 1998). As justifications support an idea’s validity, they can help create 
CCs (see Figure 1, middle column; e.g., Goldbeck, 1998). 
 
 Hypothesis H-3b.  Correct evaluations, group knowledge gap questions, and 
    justifications facilitate the creation of CCs.  
   
Group problem solving actions that hinder CCs 

Disagreements can help create CCs according to socio-cognitive conflict theory, but the 
effects might differ for polite and rude disagreements according to politeness theory (Brown & 
Levinson, 1987; Chiu, 2001). Polite disagreements likely facilitate CCs and group problem 
solving, but rude disagreements can hinder them, especially during status struggles.  When 
arguments spill over from the problem content space into the social relational space (Barron, 
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2003), groups members might sacrifice further problem solving progress in favor of protecting 
their public self-images (face, Brown & Levinson, 1987; Chiu & Khoo, 2003).  Status 
differences can further aggravate these face concerns. 
 Face and rudeness. As problem solving occurs in the dual space of problem content and 
social relations, each type of evaluation can affect both the problem solving (as noted above) 
and the previous speaker's face (Chiu, 2000b, 2001). Evaluations range from polite to rude: 
agreement, neutral, change of topic, and disagreements (Brown & Levinson, 1987; Chiu, 
2000b, 2001). Consider Sean’s utterance again, “three times four is seven.”  If Maya agrees 
with Sean (“uh-huh”), she supports him, promotes his face, and enhances their social 
relationship (Brown & Levinson, 1987). Thus, members often repeat shared information to 
create common ground and solidarity (Clark & Brennan, 1991). Moreover, people 
spontaneously reciprocate positive affective displays, such as eye contact, to suggest 
agreement with one another (Burgoon, Dillman & Stern, 1993).  

In contrast, other actions do not support face. Neutral actions include discourse 
management or meta-discourse actions (e.g., “what did you say?”). Although changes of topic 
(“when is class over?”) can be neutral, they can be rude if the previous speaker (Sean) expects 
a response (e.g., if Sean asks the question, “three times four is seven?”).  If Maya says “when is 
class over?” after Sean’s question, she either ignores him or does not listen to him, both of 
which are rude. Lastly, disagreements (e.g., “no, you’re wrong”) can threaten face by lowering 
public perception of the previous speaker's (Sean’s) competence (Brown & Levinson, 1987).  
 When a person disagrees (e.g., Maya says, “nope, you’re wrong”), the target person 
(Sean) ideally tries to understand the criticism and use the information to create a CC. Instead, 
the threat to Sean's face may encourage him to retaliate emotionally (face attack, “no, I’m not! 
You are. You’re always making mistakes in math ….” Chiu & Khoo, 2003; Tracy & Tracy, 
1998). Thus, rude disagreements threaten face, escalate interpersonal conflict, and often hinder 
creation and recognition of CCs (see Figure 1, middle column).  In the worst case, a spiral of 
rude disagreements can kill the collaboration. Even if the collaboration survives after a rude 
disagreement (or some other rude action, e.g., insult), group members might withhold CCs or 
correct evaluations rather than risk losing face (Chiu & Khoo, 2003). 
 To avoid threatening Sean’s face, Maya might go to the opposite extreme and publicly 
agree.  By doing so, Maya enhances her social relationship with Sean at the expense of their 
problem solving.  Such false agreements allow errors to persist and potential CCs to remain 
unspoken (see Figure 1, middle column). For example, teenage girls often avoid disagreeing 
with one another (Tudge, 1989). Even authority does not eliminate this effect, as tutors often do 
not point out their students' errors (Person, Kreuz, Zwaan, & Graesser, 1995).  
 Avoiding the extremes of rude disagreement and false agreement, Maya can disagree 
politely (with redress) to reduce the threat to Sean's face and maintain problem solving 
integrity (Brown & Levinson, 1987; Chiu & Khoo, 2003). Instead of "no, you're wrong," Maya 
can disagree politely, "If three is multiplied by four, we don't get seven." The polite 
disagreement both reduces blame and creates common ground. First, Maya uses the 
hypothetical "if," thereby distancing the error away from them. Second, she does not refer to 
Sean, (no “you”) thereby avoiding assignment of blame. Third, Maya uses the passive voice, 
"is multiplied," not the active voice, to hide causal agency and responsibility. Lastly, she uses 
the passive circumstantial verb "get," thereby implicating agency in external conditions.  
 Maya’s polite disagreement creates common ground by repetition and shared 
positioning. By repeating Sean’s computation, "three is multiplied by four . . . seven," Maya 
suggests that she shares his understanding. Maya also uses shared positioning, "we," to claim 
common cause with Sean.  
 Maya’s polite disagreement supports her relationship with Sean, so he is less likely to 
retaliate. Instead, Sean is more likely to try to understand Maya's criticism, recognize the flaw, 
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and correct it with a CC (Chiu & Khoo, 2003). Indeed, the benefits of polite disagreements are 
so strong that it is the accepted norm among peers, as lack of redress during a disagreement is 
noticeably rude and unacceptable (Holtgraves, 1997). In short, polite disagreements might 
support social relationships, CC construction, and CC recognition, thereby enhancing both the 
problem content and social relational spaces (see Figure 1, middle column).   

Other rude actions include commands and insults.  As commands demand action from 
the target listener(s), they impinge on the target listener's freedom and are less polite than 
questions or statements (see Figure 1, middle column).  Likewise, insults attack the target 
listener's face (Tracy & Tracy, 1998).   
 
 Hypothesis H-3c.  Polite disagreements help creation of CCs, but rude  
    disagreements, false agreements, and commands hinder them.  
 

Status.  According to status characteristics theory, status differences can reduce CCs 
and distort evaluations through the pursuit of high status via status struggles (Bales, 2001; 
Gersick, 1988) or through the greater influence of high status members (Cohen, 1994). Cohen 
(1994) defined status as “an agreed-on rank order where it is generally felt to be better to be 
high than low rank” (p. 23). 
 As a higher status person often receives more group resources and attention, people 
often compete for higher status (status struggles), especially if no clear status hierarchy exists 
(Bales, 2001; Gersick, 1988). During status struggles, intentional rude disagreements can 
hinder creation of CCs, but they can also enhance one's face by forcing a competitor to lose 
face (face attacks; e.g., "five times two is obviously ten, not seven," Tracy & Tracy, 1998).   
 After a status hierarchy has been established, group members expect higher status 
members to have greater task competencies and to contribute more toward their desired 
outcome(s) (Dembo & McAuliffe, 1987). As a result, higher status members have more 
opportunities to perform and receive rewards, as others selectively invite and defer to their 
opinions while discouraging, undervaluing, or outright ignoring lower status members' ideas.  
Thus, excessive attention to status can distort evaluations toward excessive agreement with 
higher status members. By doing so, group members enact their expectations of high status 
members dominating the interaction and might increase the ratio of flaws to correct ideas in 
their partially shared understandings.  

High status member’s influence can also increase over time. High status people tend to 
speak early and often (Hackman & Johnson, 2000). As group members value and prefer 
supporting previously-discussed, shared information rather than introducing new, unshared 
information (Stasser & Titus, 1985), high status member’s domination increases in severity 
over time (Stasser & Taylor, 1991).  

Greater status differences might increase the incentives for status struggles and yield 
greater status effects, both of which might reduce CCs (see Figure 1, left column).  For group 
problem solving among students, the primary status characteristic is often past achievement, 
but group members might also use diffuse status characteristics (e.g., race, gender) to make 
assumptions about one another’s competence (Webb, 1984; Cohen, 1982).   
  
 Hypothesis H-3d.  Greater differences among group members’ statuses  

(achievement, peer status,  gender, or race) reduce CCs. 
 
Successful vs. unsuccessful groups  

Considering the above group processes, groups with four types of properties might be 
more likely than groups without these properties to solve a problem successfully.  First, groups 
with more CCs are more likely to succeed than other groups.  Second, phase model groups are 
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more likely to have their CCs occur in clusters and to succeed compared to reach-tester groups.  
Third, groups that more often engage in processes that help create CCs are more likely to 
succeed (see Figure 1).  Fourth, groups that show more rude behaviors or have larger status 
differences (processes that hinder CCs) are less likely to succeed.    

In sum, this study examines the process of CC creation during group problem solving 
by testing the following hypotheses. First, groups with more CCs are more likely to solve the 
problem correctly. Second, CCs occur in more clusters in successful groups than in 
unsuccessful ones. Third, correct and wrong contributions help create CCs. Fourth, correct 
evaluations, group knowledge gap questions, and justifications aid CC creation. Fifth, polite 
disagreements help creation of CCs, but rude disagreements, false agreements, and commands 
hinder their creation. Lastly, greater status differences hinder CC creation. 

Method 
Using videotapes and transcripts described in Chiu and Khoo (2003, 2005, and in press), 

this study addresses a different research question with a different outcome variable (correct 
contribution).  In Chiu and Khoo’s (2003) study, the variation in student evaluations of one 
another’s ideas during group problem solving occurred mostly at the speaker turn level rather 
than at higher levels (e.g., group or classroom). Thus, this study focuses on simpler, proximal 
analyses of speaker turns, time periods, and groups (leaving more complex, distal analyses 
involving classroom and school differences for future studies).  

I analyzed the data at the group, time period, and speaker turn levels to model problem 
solving outcomes and processes.   Representative transcript segments illustrate the 
relationships among variables. 
Participants 

The participants attended four ninth grade algebra classes in an urban US high school, 
which scored at the 40th percentile (maximum = 100; California Department of Education, 
2005). Eighty-seven students were asked to answer a peer status survey and to be videotaped. 
Of the 87 students, 7 (or 8%) declined to participate. (Of these 7 students, 4 were girls and 3 
were boys. Their average grade was 77 / 100.) There were 40 girls and 40 boys. Their races 
were 12 Asian, 27 Black, 28 Hispanic, and 13 White.  

These students worked in groups of four. There were no same gender groups and no 
same race groups. These students attended the same algebra class for seven months and were 
likely aware of one another’s mathematics abilities through conversations inside and/or outside 
of class. However, these students had not received any group work training and had not 
previously worked together in groups. Thus, group members’ relative mathematics abilities 
were more likely to have a primary status effect. Likewise, diffuse status characteristics such as 
gender and race were likely to have smaller effects compared to that of strangers (Sharan & 
Shachar, 1988; Webb, 1991).  
Procedure 

All 80 algebra students who agreed to participate answered two questions regarding 
peer status, "Who are 3 classmates you would most like to hang out with? Name 3 classmates 
who are the easiest for you to talk with outside of school work." Later, their teacher presented 
the following problem in their algebra classes: 

"You won a cruise from New York to London, but you arrive 5 hours late. So, the ship 
left without you. To catch the ship, you rent a helicopter. The ship travels at 22 miles an 
hour. The helicopter moves at 90 miles an hour. How long will it take you to catch the 
ship?"  

As advocated by cooperative learning researchers (e.g., Cohen, 1994; Johnson & Johnson, 
1994), this problem was challenging for these groups of students and had multiple solution 
methods (see Appendix A). The classes had studied equations with single variables, and the 
teacher used the above problem to introduce them to a new unit on algebraic equations with 
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multiple variables. Hence, the students had not yet learned, in class, any procedures for solving 
this problem. Furthermore, the problem involved complicated mathematics relationships, 
non-trivial combinations of algebraic operations, and a non-integer solution. One solution 
equates the distance computations for each vehicle (cruise ship and helicopter; 22 mph x 
[Time + 5 hours] = 90 mph x Time), to obtain 1.618 hours or 1 hour 37 minutes. 

The students worked in groups for 30 minutes. (If students finished early and chatted 
off-task, this off-task talk was not included in the analysis. Only groups that successfully 
solved the problem finished early.) They had pens, paper, and calculators available for their use. 
There were six to seven videocameras in a classroom, one following the teacher and one for 
each group of students. Likewise, the teacher and each group of students had their own 
microphone and audiotape recorder to backup the video recordings. The videotape data were 
transcribed, coded, and analyzed. 
Variables 
 See Table 1 for summary statistics and descriptions of variables.  Using a similar set of 
data from a pilot study, I trained two research assistants (RAs) to transcribe and code the 
videotapes. Each transcript was divided into sequences of words or actions (e.g., writing 
"3 + 40") by the same person (speaker turns). Blind to the study's hypotheses, the RAs coded 
each speaker turn from the videotape on to a transcript, maintaining a log of each videotape to 
aid their coding. To compute the inter-rater reliability, I used Krippendorff's D (2004). Unlike 
other reliability measures, Krippendorff’s D applies to any number of coders, any number of 
categories or scale values, any level of measurement, any sample size, and incomplete data.  Its 
values range from -1 (maximum disagreement) to 1 (perfect agreement).  A value near 0 
indicates chance agreement, and a value of 0.7 or higher indicates satisfactory agreement. 
 The RAs tried to settle coding disagreements by consensus. They could not agree in 19 
cases, so I made the final coding decision. Due to poor sound quality, 49 speaker turns could 
not be coded. These turns were coded as missing and inspected with adjacent outcomes and 
predictors for significant correlations. As they did not correlate significantly with other 
variables, omitting them was not likely to affect the results. 
 Speaker turn variables. Unlike flat classification schemes that only allow one or two 
codes for each speaker utterance (e.g., Bales, 2001), the RAs coded each speaker turn along 
five dimensions: evaluation of the previous action (EPA), knowledge content (KC), validity, 
justification, and invitational form (IF), (Chiu, 2000a; Chiu & Khoo, 2003). EPA, KC, and IF 
captured interactions and relationships across speaker turns (relational measures). See Table 1, 
Table 2, and Appendix B for coding examples, coding decision trees and further details.  As the 
data only had two insults, the statistical power was too low to test their effects.  
Data Analysis 

A group-level analysis tests the relationship between CCs and a correct solution, 
followed by a discussion of some difficulties with lower level analyses and strategies for 
addressing them.  Afterwards, I identified watersheds (breakpoints) and time periods, followed 
by speaker turn-level analyses of CCs.  See Table 3 for a summary of the hypotheses, data, 
models of variables, and theoretical rationales. 

Predicting solution score at the group level. First, I ran an analysis of the outcome 
variable solution score to test hypothesis H-1, that groups with more CCs were more likely to 
solve the problem. Hierarchical regressions and path analyses were used to test for total, direct, 
and indirect effects on solution score. Solution score was an ordered variable, not a continuous 
one, so using a least squares regression would have biased the estimation of the standard errors 
(Kennedy, 2004). Ordered Logit addressed this problem (Kennedy, 2004). 
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Table 1 
Summary table of group level variables 
Group Variable  Mean SD Min Max Description 
Outcome variables 
Solution score 1.90 1.25 1 3 Score of group’s final solution.  See appendix 

A. 
Correct 
contribution (CC) 

0.28 0.18 0.02 0.59 A correct idea that has not been mentioned 
earlier during the group problem solving 
session 

Before problem solving  
Classroom_1 0.25 0.44 0 1 Binary variable for students in classroom 1. 

Baseline classroom is classroom 4. 
Classroom_2 0.30 0.46  0 1 Binary variable for students in classroom 2. 
Classroom_3 0.25 0.44 0 1 Binary variable for students in classroom 3. 
Girl 2.00 0.65 1 3 Number of girls in each group (0 indicates all 

boys). 
Asian 0.60 0.50 0 2 Number of Asians in each group. 
Latino 1.40 0.75 0 4 Number of Latinos in each group. 
White 0.65 0.49 0 2 Number of Whites in each group. 
Mathematics grade  82 7 71 92 Mean of all students' last semester's 

mathematics grades within a group. 
Highest 
mathematics grade  

92 8 77 99 Highest mathematics grade of any student 
within a group 

Peer status  23 8 9 37 Mean number of times a student's name 
appeared in classmates' answers to the 
following questions. Who are 3 classmates 
you would most like to hang out with?  Name 
3 classmates who are the easiest for you to 
talk with outside of school work.  This 
measure is the mean for the group and serves 
as a proxy for the group's social skills. 

Measures of status effects 
Math grade 
Variance 

101 70 12 300 Variance of students' mathematics grade 
within each group 

Peer status 
Variance 

37 29 0.25 108 Variance of peer status within each group 

During problem solving  
Total no. of words  1363 1174 371 3,885 Total number of words during a group's 

problem solving sessions. The large standard 
deviation is partially due to five groups that 
spoke over 2,400 words each. 

Total on-task 
words 

1338 
 

1277 
 

342 2,841 Total number of words spoken on on-task 
turns during a group's problem solving 
sessions.  See total words note. 

New ideas      
Wrong contribution 0.12 0.05 0.04 0.20 A flawed idea that has not been mentioned 

earlier during the group problem solving 
session  

Argumentation    
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Correct evaluation 0.37 0.19 0.14 0.79 Agree with the previous speaker's correct idea 
or disagree with the previous speaker's 
incorrect idea 

Unresponsive 0.16 0.09 0.02 0.31 Ignore the previous speaker; initiate new topic 
Polite disagreement 0.16 0.06 0.06 0.27 Disagreement with the previous speaker with 

at least one form of redress 
Question 0.23 0.07 0.15 0.45 An elicitation that expects a verbal response 

or a non-verbal substitute (Tsui, 1992; 
Sinclair & Coulthard, 1992) 

Justification 0.12 0.09 0.04 0.30 An action that supports an answer or claim by 
at least one of the following: linking it to data, 
using a warrant, or supported by backing 
(Toulmin, 2003). 

Face and Rudeness    
Rude disagreement 0.09 0.05 0.02 0.19 Disagree with the previous speaker without 

redress 
Agreement 0.58 0.10 0.39 0.86 Agree with the previous speaker 
Command 0.06 0.07 0.00 0.20 A directive that invites a non-verbal response 

(Sinclair & Coulthard, 1992) 
 
 
Table 2.  
Coding of a classroom discourse segment along five dimensions: (1) evaluation of the previous 
action (EPA: agreement [+], polite disagreement [–], rude disagreement [---], ignore/new 
topic[*]), (2) knowledge content (KC: contribution [C], repetition [R], null academic content 
[N]), (3) validity (right [�], wrong [X], null academic content [N]), (4) justification 
(justification [J], no justification [], null academic content [N]), and (5) form of invitation to 
participate (IF: (command [!], question [?], statement [_.]). 
Person Action EPA KC Validity Justify IF 
Ana Do three times four hours. * C � [] ! 
Ben Three times four is–  + R � [] _. 
Eva –three times four is seven hours. + C X [] _. 
Jay Wrong, three times four is eight hours. --- C X [] _. 

Ben 
If we do three times four, don't we get 
twelve hours because four plus four plus 
four is twelve? 

– C � J ? 

Ana Yep. + N � N _. 
 

To predict solution score, the following independent variables were added to the 
regression.  First, classroom identification binary variables were entered to control for 
classroom effects.  Then, the group's mean mathematics grade and its members’ highest 
mathematics grade were entered into the regression both separately and together. If both were 
significant predictors alone but neither was significant together, the one that explained more 
solution variance (McFadden's, 1974, R2) was kept.  The variables total number of words and 
total number of on-task words controlled for the total talk in each group.  Time constrains the 
direction of causality, so group processes cannot affect characteristics prior to the group 
problem solving. Hence, I entered characteristics of group members into the regression before 
entering group processes. The order was: mathematics grade (mean and/or highest), peer status, 
mathematics grade variance, peer status variance, words, on-task words, and percentage of CCs 
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over total group turns. (Unlike percentage of CCs over total turns, a simple CC total favors 
groups that generate lots of ideas, both correct and incorrect. Meanwhile, the ratio of CCs over 
new ideas is a measure of accuracy that might overrate groups that produced few ideas. 
Regressions of solution scores with these other variables tested the results’ robustness.)  

A nested hypothesis test (F2 log likelihood) checked whether each set of added 
variables was significant (Kennedy, 2004). Only significant variables were retained in 
subsequent regressions.  

A path analysis tested for direct and indirect effects. As time constrains the direction of 
causality, the predictors were entered in temporal order into the path analysis. These 
computations were performed with the statistical software, E-views (Lilien, Startz, Ellsworth, 
Noh & Engle, 1995). As the underlying distribution was not known, I repeated the above 
analyses with ordered Probit to ensure that the results did not depend on the Logit distribution. 
Note that the small sample size (N = 20) limits the statistical power of this analysis to identify 
non-significant results at the group level (power = 0.25 for an effect size of 0.3).  
 Addressing difficulties of group process analyses. Statistical analyses of group 
processes at the speaker turn level must overcome three difficulties. First, group members' 
behaviors and effects differ across groups and across time (nested data). Second, the outcome 
variable is discrete, not continuous. Third, events are often similar to recent events in 
time-series data (serial correlation).  
 Ordinary least squares (OLS) regressions do not address these difficulties. First, OLS 
often underestimates the standard errors of regression coefficients when applied to nested data 
(Goldstein, 1995). Second, OLS is inefficient for discrete variables and yields biased results 
(Kennedy, 2004). Lastly, if the time-series relationships are not modeled properly, the model 
residuals can be serially correlated, resulting in inefficient parameter estimates and biased 
estimates of the parameters’ standard errors (Kennedy, 2004).  
 Thus, I address these difficulties by using a statistical discourse analysis tool, dynamic 
multilevel analysis (DMA, Chiu & Khoo, 2005). DMA identifies distinct time periods, tests for 
group and time period differences, builds an explanatory model for CCs, tests for serial 
correlation, and models direct and indirect effects. See appendix C for the underlying 
mathematics equations. 
 Watersheds separate distinct time periods of many vs. few CCs. Within a problem 
solving session, there might be fewer CCs at the start when people are trying to understand the 
problem than at the end when they are close to a solution. Hence, dividing the time series data 
into time periods with significantly more vs. fewer CCs allows testing of hypothesis H-2 
(groups with more clusters of CCs are more likely to solve the problem correctly) and testing of 
predictors’ different effects across time. 
  For each group, I used a modified version of the method outlined in Maddala and Kim 
(1998) based on information criteria to identify the watersheds in time (breakpoints) that 
divided each group’s problem solving activity into distinct time periods. Conceptually, 
information criteria measure whether a model strikes a good balance between parsimony and 
goodness of fit. Unlike other information criteria, the Schwarz or Bayesian information 
criterion (BIC) provides a consistent estimator for the number of lagged variables in the true 
model (Grasa, 1989). Predicting the outcome variable, CC, I added locations of possible 
breakpoints as independent variables and computed the BIC for a simple univariate time-series 
model (an auto-regressive order 1 model). Assuming a given number of breakpoints (first 0 
breaks, then 1 break, then 2 breaks, etc.), and using the model above, I calculated the BIC for 
all possible locations of those breakpoints in the time series. (For example, for one break, 
calculate the BIC if the break is between turn 1 and turn 2, then if it is between turn 2 and turn 
3, etc.) This was done for all possible numbers of break points from 0 to 5. (Current 
microcomputers lack the computational speed to test more than five break points [six time 
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periods]). The optimal model has the lowest BIC. Applying this method to each group yielded 
the number and locations of breakpoints (and hence time periods) for each group.   

Then, I used a t-test to determine whether successful groups have more CC 
clusters/time periods than unsuccessful groups (hypothesis H-2). The small sample size limits 
the statistical power of this analysis to identify non-significant results (number of time periods 
= 72; power = 0.75 for an effect size of 0.3). Transcript segments to illustrate representative 
breakpoints. 
 Predicting CCs at the speaker turn level. I used a multi-level Logit variance 
components model (Goldstein, 1995; Bryk & Raudenbush, 1992) to test if the outcome 
variable, CC, significantly varied across groups or across time periods. Multi-level models 
separated unexplained error into speaker turn (level 1), time period (level 2), and group (level 
3) variance components, thereby removing the correlation among error terms resulting from 
speaker turns nested within time periods within groups. If the variance components model 
showed significant variation at both the group and time period levels, then both the groups and 
time periods were heterogeneous. In that case, a 3-level model was needed.   
 Next, I entered the following independent variables.  First, I added a vector of s 
classroom identification variables as control variables (S). As the likelihood ratio test for 
significance of additional explanatory variables was not reliable for this estimation method, 
Wald tests were used (Goldstein, 1995). Non-significant variables were removed from the 
specification. 
 Then, I entered t variables at the group level: correct group solution, mean of group 
members' mathematics grades, mean of group members' peer statuses, variance of mathematics 
grades, and variance of peer statuses (T). The last two variables tested the status effects 
hypothesis (H-3d). As with S, a Wald test was done on T. Then, I tested for interaction effects 
among pairs of significant variables in T. Non-significant variables and interactions were 
removed from the specification. 
 Next, I added u current speaker variables at the speaker turn level: gender, race, 
mathematics grade, peer status, correct evaluation, agree, politely disagree, rudely disagree, 
justify, question and command (U).  Likewise, I applied the procedure for T to U. Then, I 
tested if the speaker turn level regression coefficients differed significantly at the time period 
or group levels (Goldstein, 1995). If yes, I kept these parameters in the model. Otherwise, I 
removed them. 
 Using a vector autoregression (VAR, Kennedy, 2004), I entered lag variables for the 
previous speakers, first lag 1 (indicating the previous turn and denoted –1), then at lag 2 
(denoted –2), then at lag 3, and so on until none of the variables in the last lag were significant 
(lag 4 in this case). First, I added v previous speaker variables: gender (–1), race (–1), 
mathematics grade (–1), peer status (–1), correct evaluation (–1), agree (–1), politely disagree 
(–1), rudely disagree (–1), CC (–1), wrong contribution (–1), correct old idea (–1), justify (–1), 
question (–1), and command (–1) (V). As shown in Figure 1, these variables test the new ideas, 
argumentation, and rudeness hypotheses (3a, 3b, and 3c).  I applied the procedure for U to V. 
Then, I repeated the procedure for lags –2, –3, and –4 of the variables in V. The parameters 
were estimated first with marginal quasi-likelihood, and these results served as starting values 
for predictive quasi-likelihood estimation (Goldstein, 1995). 
 All statistical tests used an alpha level of .05. Benjamini, Krieger, and Yekutieli's 
(2006) two-stage linear step-up procedure controlled the false discovery rate, as computer 
simulations showed that their procedure addressed this issue better than 13 other methods. 
 I used Ljung-Box (1979) Q-statistics to test for serial correlation (up to order 4) in the 
residuals for all 20 groups. If the residuals are serially correlated, then the parameter estimates 
are likely inefficient, and standard error estimates are likely biased (Kennedy, 2004). Then, the 
explanatory model must be modified with extra lagged outcome variables (lags of CC) or direct 
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modeling of the serial correlation (see Goldstein, 1995, for details).  
 Based on the multilevel analysis results, the path analysis estimated the direct and 
indirect effects of the significant predictors separately to compute their total effects (Kennedy, 
2004). As time constrains the direction of causality, I entered the explanatory variables in 
temporal order into the path analysis.  
 To aid interpretation of these results, I converted each predictor’s total effect (direct 
plus indirect) to odds ratios, reported as the percentage increase or decrease (+X% or –X%) in 
a CC's likelihood (Kennedy, 2004). I repeated the above analyses with multi-level Probit to test 
if the results depended on the Logit distribution. I also estimated the predictive accuracy of the 
final model by comparing the final model's prediction of whether a CC occurred at each 
speaker turn in each group (yijk*) with the CC's actual presence or absence (yijk).  

A multilevel analysis has multiple units of analysis, so the statistical power for each one 
(group, time period, speaker turn) must be computed separately. As noted earlier, the statistical 
power for groups and time periods are fairly low, so non-significant results at these levels must 
be interpreted cautiously.  At the speaker turn level however, the sample size is 2,951, so the 
statistical power is over 0.99 even for a small effect size of 0.1.  None of these units of analyses 
(speaker turn, time period, group, classroom, school, country) are necessarily representative, so 
results might differ in other contexts. As students can change behaviors during another 
student’s speaker turn, modeling students as a level of analysis requires multivariate outcome, 
multilevel, cross-classification Logit/Probit, but no implementation of such a method has been 
shown at the publication time of this journal article. 

Results  
After reporting the preliminary results, I showed that groups with a larger percentage of 

CCs had higher solution scores. Then, I examined the differences across time periods, followed 
by the predictors of CCs at the speaker turn level. Due to space considerations, I include only 
the main results here; all results are available upon request. 
Preliminary results 

Of the 3,153 total speaker turns, 49 turns were not coded because of poor sound quality 
(see Appendix D, Table D1).  The omitted turns did not significantly correlate with other 
variables, so they likely did not affect the results. As lag variables required data from preceding 
turns, 153 turns could not be used.  Coding of each dimension showed high inter-rater 
reliability (see Appendix D, Table D2). 

The summary statistics showed that correct contributions occurred only 20% of the 
time (see Table 1), more often in successful groups that solved the problem (26%) than in 
unsuccessful ones (16%; see Table 4).  Moreover, successful groups often had higher 
mathematics grades than unsuccessful groups (91 vs. 82). Compared to unsuccessful groups, 
successful groups were more likely to evaluate ideas correctly and justify their ideas, and less 
likely to disagree rudely (38% vs. 24%; 18% vs. 13%; 6% vs. 12%) 
Predicting solution score at the group level 

As expected, the students found the problem difficult. Only 10 of the 20 groups solved 
it correctly, and every group made at least three mistakes.   See Table 1 for overall summary 
statistics, Table 3 for summary statistics of successful groups that solved the problem vs. 
unsuccessful groups, and Appendix D Table D3 for the correlation matrix. All groups were 
reach-testers; no group used linear problem phases. This result suggests that the natural 
inclination of these students is to reach-test, similar to many adults (Pavitt & Johnson, 2001; 
Poole, 1981).  
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Table 3 
Summary table of hypotheses, data, model and theories regarding correct contributions (CCs) 
Hypothesis Data Model of predictors Theories 
H-1. Groups with 
more CCs are more 
likely to solve the 
problem correctly. 
 

Final group answers; 
Student 
characteristics; 
Computed group 
characteristics; 
Summary statistics of 
variables coded from 
2,951 turns of 
transcripts 

Math grade (mean vs. 
highest), ratio of CCs 
over total group 
turns. 
Other variables: peer 
status, math grade 
variance, peer status 
variance, words, 
on-task words 

Functional group 
decision-making  
(Orlitzky & 
Hirokawa) 

H-2. CCs occur in 
more clusters in 
successful groups. 

Final group answers; 
Each group's time 
periods of high vs. 
low CCs  

T-test of differences 
in time periods in 
successful vs. 
unsuccessful groups 

Phases vs. 
Reach-tester  
(Ellis & Fisher vs. 
Pavitt & Johnson) 

H-3a. Correct and 
wrong contributions 
aid CC creation 

Final answers to 
algebra problem; 
Student 
characteristics; 
Group 
characteristics; 
Variables coded from 
2,951 turns of 
transcripts; 

CC (–i), wrong 
contribution (–i), 
for i = 1..4 a 
 

Functional group 
decision-making 
(Orlitzky & 
Hirokawa) 

H-3b. Correct 
evaluations, 
questions, and 
justifications aid CC 
creation 

Correct 
evaluation  (–i), 
question  (–i), 
justification (–i) for i 
= 0..4 a 

Socio-cognitive 
conflict (Doise, 
Mugny & 
Perret-Clermont; 
Piaget) 

H-3c. Polite 
disagreements aid CC 
creation but rude 
disagreements, false 
agreements, and 
commands hinder 
them. 

Politely disagree (–i), 
rudely disagree (–i), 
agree (–i), command 
(–i) for i = 1..4 a 

Politeness (Brown 
& Levinson) 

H-3d. Greater status 
differences  hinder 
CC creation 

Variances of Math 
grade, peer status, 
gender, and race a 

Status 
characteristics 
(Cohen) 

a Variables in full model. Classroom identification variables: Group level variables: correct 
solution, mean math grade, mean peer status, math grade variance, peer status variance, gender 
variance, race variance. Current speaker (0) variables: gender, race, math grade, peer status, 
correct evaluation, agree, politely disagree, rudely disagree, justify, question and command. 
Previous speakers' lag variables (i = 1..4): gender (–i), race (–i), math grade (–i), peer 
status (–i), correct evaluation (–i), agree (–i), politely disagree (–i), rudely disagree (–i), 
CC (–i), wrong contribution (–i), correct old idea (–i), justify (–i), question (–i), command (–i)   

 
Groups with higher mean mathematics grades or a greater percentage of CCs had 

higher solution scores, supporting hypothesis H-1 (see Table 5). When mean mathematics 
grade and highest mathematics grade were both entered, only mean mathematics grade was 
significant (E = 0.16, SE = .05, p < .05, McFadden's R2 = .24). None of the other predictors 
were significantly related to solution score. Mean mathematics grade also predicted percentage 
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of CCs (E = .012, SE = .005, p < .05, R2 = .20). Replacing percentage of CC with CC frequency 
or CC over new ideas ratio yielded similar results but explained less variance.  

 
Table 4 
Summary table of speaker turn variables for successful and unsuccessful groups 
 Overall Successful Unsuccessful   
Speaker turn level variable  Mean  SD  Mean  SD  Mean  SD  Min.  Max. 
Unsolved a 0.50 0.50 0 0 1 0 0 1 
Correct contribution 0.20 0.40 0.26 0.44 0.16 0.37 0 1 
Before problem solving         
Girl 0.47 0.50 0.42 0.49 0.50 0.50 0 1 
Asian 0.15 0.35 0.13 0.34 0.16 0.36 0 1 
Latino 0.25 0.43 0.31 0.46 0.21 0.41 0 1 
White 0.26 0.44 0.20 0.40 0.30 0.46 0 1 
Mathematics grade 86 10 91 8 82 10 64 99 
Peer status 6 6 8 7 6 5 2 9 
During problem solving         
New ideas         
Wrong contribution 0.10 0.30 0.10 0.31 0.09 0.29 0 1 
Argumentation         
Correct evaluation 0.30 0.46 0.38 0.49 0.24 0.43 0 1 
Polite disagreement 0.18 0.39 0.19 0.39 0.18 0.39 0 1 
Ignore / Unresponsive 0.17 0.37 0.12 0.33 0.20 0.40 0 1 
Question 0.24 0.43 0.27 0.44 0.22 0.42 0 1 
Justification 0.15 0.36 0.18 0.38 0.13 0.33 0 1 
Face and Rudeness         
Rude disagreement 0.10 0.29 0.06 0.23 0.12 0.33 0 1 
Agreement 0.56 0.50 0.63 0.48 0.50 0.50 0 1 
Command 0.07 0.26 0.10 0.30 0.05 0.22 0 1 
a Separate analyses for groups with each solution score showed substantial differences between 
groups that did and did not solve the problem correctly, and similar results across the latter 
unsuccessful groups. Thus, unsolved was coded as a binary variable (0 or 1) in the turn-level 
analysis to facilitate interpretation of the results.  
 
Table 5.  
Significant, unstandardized parameter coefficients of hierarchical set ordered Logit 
regressions predicting solution score (with standard errors in parentheses) 
 2 Ordered Logit Regressions predicting solution scores 
Predictor Model 1  Model 2  
Mathematics Grade 0.256  **  0.217  *  
 (0.089)  (0.095)  
% Correct Contributions   11.377  *  
   (5.033)  
McFadden's R2 0.228  0.377  
Note. Significant constant term is omitted.  *p < .05, **p < .01, ***p< .001 
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Watersheds identifying distinct time periods of many vs. few CCs 
 CCs did not vary across classrooms or across groups, but CCs varied across time 
periods and across speaker turns. The classroom identification variables did not significantly 
predict CCs, so the prevalence of CCs did not differ across classrooms. The variance 
components model showed that the likelihood of CCs did not vary significantly across groups 
(M = 0.000, SE = 0.001), but CCs did vary significantly across time-periods (M = 3.457, SE = 
0.682) and speaker turns (M = 0.908, SE = 0.024).  On average, successful groups produced 
more CCs than unsuccessful groups. However, they did not do so consistently, as a CC's 
likelihood differed substantially across time periods within a group. Some time periods had 
many CCs while other time periods had few CCs. Hence the likelihood of CCs differed mostly 
across time periods, not across groups. Of the total variance, less than 0.1% of the variance 
occurred at the group or classroom level, 79% was across time periods while 21% was within 
time periods.  (The high variance of CCs across time periods [79%] also showed that the 
breakpoint method effectively identified distinct time periods.)  As the variance of CCs across 
groups was not significant, a 2-level model (time periods and turns) with group interaction 
terms was used.  
 CCs occurred in similar numbers of clusters in both successful and unsuccessful groups, 
so the results did not support hypothesis H-2. See figures 2 and 3, which show each group's 
time periods of high CCs vs. low CCs. The time periods for each group ranged from one to five. 
The number of time periods did not differ significantly in successful vs. unsuccessful groups 
(successful: M = 3.3, SD = 2.1; unsuccessful: M = 3.9, SD = 1.7; t-test = 0.702; p > .05).   
 An exploratory analysis of the time periods showed that only three groups had 
consistent CC production rates. Two groups that consistently produced CCs at a high rate 
exceeding 50% successfully solved the problem. Meanwhile one group that consistently 
produced CCs at a low rate below 20% failed to solve the problem. Otherwise, CCs clustered in 
17 of the 20 groups. Seven of eight groups that started with a high CC rate successfully solved 
the problem, and all eight groups that ended with a high CC rate successfully solved the 
problem.  Eight of ten groups that ended with low CC rates failed to solve the problem. 
 As shown in the examples below, an exploratory classification of the 52 breakpoints 
suggests 3 broad categories: off-task l on-task transitions, insights, and critical errors.  At 26 
of the breakpoints (8 in successful groups, 18 in unsuccessful groups), groups transitioned from 
off-task to on-task or vice-versa.  At 14 of the breakpoints (8, 6), a group member had an 
insight and their CCs increased sharply.  At the remaining 12 breakpoints (7, 5), group 
members made a critical error, and their CCs fell sharply.  
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Groups with correct solutions 
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Figure 2. Line graphs of the percentage of new ideas that were correct in each time period for 
groups with correct solutions. Each line segment indicates a distinct time period. 
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Groups with incorrect solutions (Score) 

0%

20%

40%

60%

80%

100%

0 10 20 30
Time (mins)

%
 C

or
re

ct

  

0%

20%

40%

60%

80%

100%

0 10 20 30
Time (mins)

%
 C

or
re

ct

 

0%

20%

40%

60%

80%

100%

0 10 20 30
Time (mins)

%
 C

or
re

ct

  

0%

20%

40%

60%

80%

100%

0 10 20 30
Time (mins)

%
 C

or
re

ct

 

0%

20%

40%

60%

80%

100%

0 10 20 30
Time (mins)

%
 C

or
re

ct

  

0%

20%

40%

60%

80%

100%

0 10 20 30
Time (mins)

%
 C

or
re

ct

 

0%

20%

40%

60%

80%

100%

0 10 20 30
Time (mins)

%
 C

or
re

ct

  

0%

20%

40%

60%

80%

100%

0 10 20 30
Time (mins)

%
 C

or
re

ct

 

0%

20%

40%

60%

80%

100%

0 10 20 30
Time (mins)

%
 C

or
re

ct

  

0%

20%

40%

60%

80%

100%

0 10 20 30
Time (mins)

%
 C

or
re

ct

 

(2/3) (2/3) 

(1/3) (1/3) 

(1/3) (1/3) 

(0/3) (0/3) 

(0/3) (0/3) 



Correct contributions 
20 

Figure 3. Line graphs of the percentage of new ideas that were correct in each time period for 
groups with incorrect solutions (with scores in parentheses). Each line segment indicates a 
distinct time period. 
 
The following transcript examples illustrate the different types of breakpoints that separate 
time periods of many vs. few CCs. At the following breakpoint at turn seven, the group moved 
from an off-task conversation to work on the problem. (All names are pseudonyms.)  
Turn Person  Talk and/or Action 
1 Jim I'm going to Idaho with my family.  
2 Bob We went to Maryland last summer.  
3 Jim I don't want to go there. 
4 Pat What's the distance between New York and London? 
5 Bob Oh, thirty five hundred. We're going; we're going helicopter. 
6 Pat Something like three thousand five hundred. 
7 Jim I really think I just don't want to go. Okay, so the boat, how fast is the cruise 

going? It's twenty two miles per hour? That's over five miles, so five hours, so 
five times twenty two would be, wait. 

8 Tim [raises hand] Ms. T______ [teacher's name] 
9 Jim They're only, they're only really like, luckily, a hundred and ten miles out.  
10 Bob If they go ninety miles an hour, they can get there in less than two hours. 
Jim and Bob discussed their travels before Pat asks a question about the problem ("What’s the 
distance between New York and London?"). Although not relevant to the solution, this 
question drew the students' attention to the problem. Bob projected himself into the problem 
situation ("we're going, we're going helicopter") after answering Pat's question ("thirty-five 
hundred"). After Pat acknowledged Bob's answer, Jim concluded his off-task thoughts ("I 
really think I just don't want to go") and began working on the problem ("Okay, so the boat, 
how fast …"). Jim's proposed multiplication in the breakpoint turn seven ("five times 
twenty-two) was the first CC in their group. After Tim asked for the teacher, Jim and Bob 
began a series of CCs ("a hundred and ten miles out" and "they can get there in less than two 
hours"). So, this breakpoint indicated a change from off-task to on-task behavior at the first CC. 
(To distinguish on-task time periods from off-task time periods, the breakpoint method can be 
used on an on-task [vs. off-task] outcome variable to yield an on-task breakpoint at turn four.) 
 Breakpoints also occurred at major insights. In the following example, the students did 
not make much progress until a student drew a diagram.  
61 Rex One-ten and ninety is [hits calculator keys, 110 + 90] two hundred 
62 Amy What's two hundred? 
63 Rex Two hundred miles? 
64 Liz It's five hours, so [hits calculator keys, 90 x 5] Four hundred and fifty? 
65 Amy [draws] Ok, this is like. Okay, so like, ok, this [points to drawing] is New 

York, right? And that's London [points to drawing]. 
66 Liz Right.  
67 Amy [pointing to drawing] Okay, okay um, that's the cruise ship. Ok. And like the 

cruise ship is ahead of the helicopter, right? 
68 Liz Yeah. At a hundred and ten.  
69 Amy Okay, [writes 110 near the cruise ship symbol], the helicopter's moving up. 
70 Max That's a helicopter?  
71 Amy Well, [raises open hands] I can't draw [laughs] 
72 Max [laughs] Alright.  
73 Amy Okay? You've got to think about the time. We have ninety– 
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74 Liz –We have this um to deal with this [points to cruise ship on drawing] too 
because it's not gonna stop. 

75 Amy Oh, the cruise ship's not gonna stop. 
Rex and Liz had been adding, multiplying, and dividing several numbers from the problem (5, 
22, 90) without making much progress. After Amy's questioning of Rex ("what's two 
hundred?") yielded an uncertain answer ("two hundred miles?"), Amy drew a diagram of the 
problem situation, correctly modeling the ship’s location, the helicopter’s location and its 
movement (a CC in the breakpoint turn 67). Liz elaborated the diagram with the distance of the 
cruise ship from shore ("at a hundred and ten"). After some friendly teasing about the quality of 
the drawing, Amy highlighted the time traveled by the helicopter. Then, Liz interrupted with a 
CC about the cruise ship’s continuing motion ("it's not gonna stop"). Amy validated Liz's idea, 
and the group then computed each vehicle’s movements and marked their new locations on the 
diagram to solve the problem. In short, the diagram was a breakpoint that ignited several CCs 
by helping these students model changes in the problem situation rather than simply trying 
different computations. 
 Breakpoints also occurred at critical errors. In this example, the group recognized that 
the helicopter and the ship both moved and tried to compute their movements.  
91 Bob [hits calculator keys 15 x 50 = 750] 
92 Ben  What is --what is seventy thousand – seven hundred-fifty mean? 
93 Lex I think the wrong things got multiplied; try ninety and one point five. 
94 Bob [laughs, hits calculator keys 1.5 x 90 = 135] It's one thirty-five. 
95 Jim I don't know. I'm telling you, you gotta, what you gotta do is divide thirty-three 

miles into that {helicopter speed?}. Cause twenty-two plus eleven. Thirty-three.  
96 Bob Thirty-three added onto a hundred and ten [writes 33 + 110 = ]. 
97 Jim Thirty-three. 
98 Bob Then add. 
99 Jim Why are you adding? No. Just listen. Okay. Ninety. Nine, okay, no, okay, 

one-thirty-three, ninety into one thirty-three. Goes in, um, once. Gives me 
forty-seven? 

100 Ben [laughs] 
101 Bob [laughs] 
102 Lex [laughs] 
103 Jim Forty-seven? Huh? 
104 Bob Forty-seven? 
105 Jim Yeah. Forty-seven, so. Um, goes in, whad da da. {"whad da da" shows confusion} 
106 Bob Try five hours? 
107 Jim Five? Maybe one more. 
After Lex noted that Bob hit the wrong calculator keys, Bob laughed and corrected his 
computation of the helicopter's distance from shore after an hour and a half. At the breakpoint 
turn 95, Jim incorrectly disagreed and mistakenly suggested dividing the helicopter speed into 
the distance traveled by the ship in an hour and a half (33) rather than into the remaining 
distance between the two vehicles (= 9 = 143 –135; 143 = 33 + 110). When Bob suggested 
adding 33 and 110, Jim re-asserted his position ("thirty-three"), challenged Bob ("why are you 
adding?"), ignored Bob ("no, just listen"), changed his mind, and followed Bob's suggestion 
but added incorrectly ("no, okay, one-thirty-three"). Jim compounded this arithmetic error with 
further division errors to compute 133 y 90 = 47 rather than 1.47 (actually, 1.4777). Surprised 
by the result, Jim did not know how to proceed ("Forty-seven, so. Um, goes in, whad da da"). 
Bob suggested using the five hours from the problem, and Jim decided to add one more hour. 
Neither these ideas nor those for the next few minutes were productive. So, this breakpoint 
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indicated a critical error, changing a productive time period with many CCs to an unproductive 
time period with few CCs. 
Predicting CCs at the speaker turn level 
 The explanatory model at the speaker turn level showed that wrong, new ideas, 
argumentation, and politeness affected the likelihood of CCs (see Figure 4 for the path 
analysis; Table D4 for the correlation-covariance matrix; Table D5 for the multilevel logit 
regression results).  However, status differences were not linked to CCs, and CCs did not 
predict subsequent CCs. 

New ideas. These problem-solving sessions had few chain reactions of CCs, as a CC 
did not help create a subsequent CC. However, a wrong contribution (–1, in the previous turn) 
was 4% more likely to yield a CC (see Figure 4; +4%: 19% o23%; after a turn without a 
wrong, new idea, a CC occurred 19% of the time; after a turn with a wrong, new idea, a CC 
occurred 23% of the time; see Appendix C for computation details.) Thus, these results only 
partially supported hypothesis H-3a.   In response to wrong contributions, group members were 
more likely to rudely disagree (+7%: 9% o16%) and less likely to agree (–17%: 57% o40%), 
suggesting that they often recognized the flaws of wrong, new ideas.  In the following segment, 
a student incorrectly multiplied the helicopter speed by five hours. 
 Amy:  In five hours, multiply [enters 90 x 5 on calculator]  
  Four hundred and fifty in five hours.  
 Rex: Four fifty? That can't be right ‘cause the cruise ship is only at one-ten. Oh! Oh!  
  The helicopter leaves later! Multiply by two hours! Multiply by two hours! 
Rex recognized that the outcome was wrong ("that can't be right") because the helicopter 
would have passed the target cruise ship ("is only at one-ten"). This error helped Rex detect and 
correct the flaw in the number of hours from five to two (“Oh! The helicopter leaves later! 
Multiply by two hours!”). Building on Amy's partially correct idea to multiply the helicopter 
speed by five hours, Rex created a CC. 
 Argumentation.  Correct evaluations and justifications helped create CCs, but questions 
did not (partially supporting hypothesis H-3b).  Correct evaluations from any of the three 
previous speakers (–1, –2, –3) were more likely to yield a CC (+2%, +5%, and +3%, 
respectively; 19% o 21%; 19% o24%; 19% o 22%).  Each correct evaluation also yielded 
more subsequent correct evaluations, both in the next turn and in the following turn (+12%: 
27% o39% for both cases).  These correct evaluations made a subsequent CC more likely in 
part through more justifications (+3%: 15% o18%).  Correct evaluations also made wrong 
contributions less likely (–3%: 10% o 7%) and agreements more likely (+10%: 51% o 61%). 
 Justifications increased a CC's likelihood in all groups, though more in successful 
groups (+68%: 14%o82%) than in unsuccessful groups (+29%: 12% o41%), possibly 
because the quality of their justifications differed. In successful groups, members often referred 
to mathematics relationships to justify their ideas.  
 Ian: Twenty-two plus five is– 
 Jo:      –we're doing times five 'cause it's rate times time. 
When Jo corrected Ian, she referred to the "rate times time" (equals distance) formula. 
 In unsuccessful groups however, students often justified their claims by citing authority 
(e.g., teacher, textbook, problem statement).  
 May:  Ninety times five is four-fifty. 
 Kit: Ninety times–  
 May:                     – five hours because Ms. T [teacher] said five hours. 
Unlike Jo, May justified her computation by incorrectly citing the teacher, “because Ms. T 
[teacher] said five hours.”  Justifications based on mathematics might be more valid, relevant, 
and helpful to group members than those based on authority, which might explain why 
justifications had larger effects on CCs in successful groups than in unsuccessful groups.  
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Figure 4. Path analysis of significant predictors of CCs using multilevel Logit. Negative numbers in parentheses (-1, -2, -3) indicate actions that occurred one, two, 
or three turns ago. Values are standardized parameter coefficients. Crosses (®) indicate positive overall effects, while rectangles (ß) indicate negative overall 
effects.  Solid arrows (o) indicate positive direct effects, while dashed arrows (- - >) indicate negative direct effects. Thicker lines indicate larger effects.  For 
example, a correct evaluation in the previous turn (-1) has a direct effect on a correct contribution of +0.387 while its indirect effect is –0.252 (= 0.410  x –0.614), 
yielding a total effect of +0.135.  “Unsolved” refers to speakers in groups that did not correctly solve the problem.
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Justifications (–1) also raised the likelihoods of a CC (+36%: 15% o 51%) and a subsequent 
justification (+4%: 14% o18%) while reducing that of a rude disagreement (–5%: 
11% o 6%). 
 Questions (–2) reduced a CC's likelihood (–2%: 21% o 19%).  This result suggests that 
questions typically indicated individual knowledge gaps.  As such, other group members could 
give an immediate, known explanation, which did not stimulate a CC. 
 Xiao: Why do we multiply twenty-two times five hours? 
 Ron: Rate times time is how far the ship moves. 
 Xiao: Oh! Rate times time. Ok. 
When Xiao questioned a computation, Ron justified its validity via the rate-time-distance 
relationship. John understood ("oh!") and accepted it ("ok"). 

In unsuccessful groups however, a question (–2) further reduced the likelihoods of a 
justification (–1) and of a CC (respectively, –2%: 14.6% o12.6%; –4%: 17% o13%). 
Consider this segment. 
 Beth: Why ninety times five? 
 Mark: That's what the problem said. 
 Beth: No, it didn't. It didn't say do ninety times five. 
Mark answered Beth's question by referring to the problem statement, “that’s what the problem 
said.” Not satisfied with that answer, Beth challenged Mark with a rude disagreement, “no, it 
didn’t,” declaring that Mark was wrong as the problem statement did not specify that 
multiplication, “it didn’t say do ninety times five.” In short, after a question, unsatisfactory 
responses might help account for CCs being less likely in unsuccessful groups than in 
successful groups. 
  Face, Rudeness, and Status. Polite disagreements increased a CC's likelihood, 
supporting hypotheses H-3b (+14%; 13% o27%). Consider the transcript segment of Ian and 
Jo again. 
 Ian: Twenty-two plus five is– 
 Jo:      –we're doing times five 'cause it's rate times time. 
Jo redresses her disagreement by shared positioning, "we," before justifying her disagreement 
with Ian's idea. 
  In contrast, rude disagreements reduced a CC's likelihood, also supporting hypothesis 
H-3c (–4%: 21% o 17%; [4, 2]). Consider the following example. 
 Eva:  Ninety times five, four-fifty. 
 Ada: That's wrong. 
 Eva: No, it's not. 
Although Eva’s idea is arithmetically correct, the computation was not consistent with the 
problem situation and hence, conceptually incorrect. Ada rudely disagreed with Eva's 
computation without explaining, “that’s wrong.” In response, Eva retaliated with a rude 
disagreement, “no, it’s not.” Thus, rude arguments hindered creation of CCs, while polite ones 
aided their creation.   
 Controlling for correct evaluations, agreements reduced a CC's likelihood, also 
supporting hypothesis H-3c (–5%: 23% o 18%; [4, 1]).  These agreements were often simple 
confirmations such as "yep" or repetitions such as "one ten, right."  
 Lana: Uh, ninety times five, four-fifty. 
 Jack: Uh-huh. 
Students like Jack often gave brief confirmations, “uh-huh,” without further elaboration or CCs, 
suggesting that he might have used false agreements to build social relationships by sacrificing 
problem solving progress.  Meanwhile, commands did not significantly affect CC creation. 
 Status and other effects. None of the other predictors were significant. In particular, 
larger status differences did not affect CCs (no support for hypothesis H-3d).  Neither group 
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mathematics grade nor individual mathematics grade were significant either. Although mean 
mathematics grade positively correlated with group percentage of CCs in the group level 
analysis, that group level analysis omitted 99.9% of the CC variance. 
 Only two predictors showed different effects across time periods (agree and correct 
evaluation [–2], for detailed regression results, see Appendix D, Table D5). Agreements 
reduced a CC's likelihood (mean = –5%: 23% o 18%), with the effect varying across time 
periods from –3% to –21%.  Correct evaluation (–2) raised a CC's likelihood (mean = +5%: 
19% o 24%), with the effect varying across time periods from –0.3% to +9%.  The varying 
effect sizes of agreement and correct evaluations across time periods suggested that their 
effects were moderated by unexamined variables that differed across these time contexts.  
Aside from justifications, agreements, and correct evaluations (–2), the effects of all other 
predictors did not differ significantly across time periods or across groups. Hence, the other 
predictors showed no evidence of contextual effects and are candidates for broader, possibly 
universal effects.  
 This model had an 84% accuracy rate for predicting whether a CC occurred in any 
given turn (yijk* vs. yijk). Furthermore, the Q-statistics run on the final model showed no 
significant serial correlation of residuals in any of the twenty groups. So, the time-series model 
was likely appropriate.    

Discussion 
Past theoretical models have highlighted the importance of correct, new ideas (correct 

contributions or CCs) to group problem solving (e.g., Chiu, 2000a, 2001; Hinsz, Tinsdale & 
Vollrath, 1997). By understanding how group processes help or hinder CC creation, educators 
can help students engage in beneficial group processes and avoid harmful ones. This study 
replicated past research by showing that groups with more CCs were more likely to solve the 
problem successfully. More important, this study extended this line of research in three ways. 
First, I showed how satisfactory responses to questions and justifications yielded more CCs in 
groups that successfully solved the problem. Second, I statistically identified three types of 
crucial events (breakpoints) that divided each group’s problem solving into distinct time 
periods with more CCs vs. fewer CCs. Third, I showed how specific group problem solving 
processes in the micro-time context helped create CCs.  
Differences among successful and unsuccessful groups 

Groups that successfully solved the problem were more likely to respond to questions 
with justifications, showed stronger justification effects on CCs, had higher mathematics 
grades and had proportionately more CCs. Successful groups often answered their members’ 
questions with satisfactory explanations. Although these explanations did not immediately 
help create CCs, they helped build partially shared understandings in the problem content 
space and social solidarity in the social relational space, both of which might have enhanced 
the micro-time context to help create CCs later. In unsuccessful groups however, inadequate 
responses to questions were more often rebuffed with rude disagreements, which in turn 
hindered creation of CCs. 

 Justifications showed stronger positive effects on CCs in successful groups, in part 
because these groups used more justifications that referred to mathematics relationships. In 
contrast, unsuccessful groups used more authority-based justifications, which were less helpful 
in yielding CCs.   

In general, groups that had higher mathematics grades or more CCs were more likely to 
solve the problem when examining less than 0.1% of the CC variance at the group level. After 
including the remaining 99.9% of the CC variance at the speaker turn level however, group 
mathematics grades did not significantly affect CC creation.  Thus, these results highlight the 
importance of also analyzing group processes at the speaker turn level, not only at the group 
level. In short, groups that answered one another’s questions with explanations or that often 
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used justifications (especially mathematically-based ones) created more CCs and were more 
likely to solve the problem successfully. 
Clusters of CCs in time periods separated by breakpoints 
 Dynamic multilevel analysis’s breakpoint estimation method identified watersheds that 
altered group problem solving processes and their effects on CC creation.  85% of these groups 
did not uniformly created CCs at random intervals throughout their activity.  Instead, 
watersheds divided their problem solving activity into distinct time periods of many CCs vs. 
few CCs.  In contrast to hypothesis H-2, CCs clustered in most groups, regardless of their 
problem solving outcome.   
 An exploratory analysis of the breakpoints between time periods suggested three types 
of watersheds: off-task l on-task transitions, insights, and critical errors.  In half of the 
breakpoints, groups switched between primarily on-task vs. off-task time periods. During 
about one quarter of the breakpoints, a group member had an insight that led to many more 
subsequent CCs.  In the remaining breakpoints, a group member made a critical error that 
sharply reduced the number of subsequent CCs.   

Most group processes had similar effects on CC creation across time periods, showing 
no evidence of context-dependent effects. Only agreement and correct evaluations (–2) had 
different effects on CCs across time periods, suggesting that one or more unexamined variables 
might moderate their effects across these different time contexts.  
Predicting CCs at the speaker turn level 

Group members’ recent actions (micro-time context) affected CC creation. Consistent 
with prior research, correct evaluations, justifications, and disagreements aided CC creation 
(e.g., Barron, 2003; Cobb, 1995).  This study extended this line of research by showing (a) the 
effects of different types of new ideas, (b) the effect sizes of different aspects of argumentation, 
(c) the durations of argumentation effects, and (d) the effects of face and rudeness.  

New ideas. Group members' wrong contributions aided CC creation, but CCs did not 
aid creation of subsequent CCs, partially supporting hypothesis H-3a. After a wrong 
contribution, group members were more likely to disagree, suggesting that group members 
often detected and corrected flaws to create a CC. Thus, serving as grist for CCs outweighed 
the danger of accepting wrong ideas. In contrast, a CC did not aid subsequent CC creation, 
possibly because they were not necessarily recognized as correct.  Together, these results 
showed that wrong contributions were more important than correct ones for creating CCs in 
this study.  
 Argumentation. Correct evaluations and justifications both immediately aided CC 
creation while questions did not, partially supporting hypothesis H-3b. Correct evaluations had 
long lasting effects, helping create CCs over the next three speaker turns. Hence, recognizing 
as ideas as correct or flawed helps group members build on them accordingly (Barron, 2003).  
Correct evaluations also facilitated subsequent correct evaluations, justifications, and 
agreements while yielding fewer wrong contributions. Together, these results support the view 
that correct evaluations helped creating a valid basis of partially shared understandings in the 
problem content space for creating CCs.  
 Justifications had the largest effect on CCs (+68% in successful groups and +29% in 
unsuccessful groups).  Furthermore, the effect of two consecutive justifications on creating 
CCs was larger than the combined effects of all other predictors.  Justifications both elicited 
further justifications in the problem content space and reduced rude disagreements in the social 
relational space, thereby facilitating calmer, reason-based discussions that helped create CCs 
both immediately and in the future.   

In contrast, questions yielded fewer CCs, especially in unsuccessful groups.  In this 
study, questions often identified individual knowledge gaps. Thus, other group members could 
answer these questions with previously discussed ideas, reducing the likelihood of immediately 
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creating a CC.  Failing to respond with satisfactory explanations led to more rude 
disagreements, and eventually, fewer CCs, especially in unsuccessful group.  Hence, 
answering group members’ questions satisfactorily likely built partially shared understandings 
in the problem content space and solidarity in the social relational space, both of which likely 
helped create future CCs and a correct problem solution. 

Face and rudeness. Polite disagreements created more CCs, but rude disagreements 
and agreements yielded fewer CCs, supporting hypothesis H-3c. These results were consistent 
with the view that polite disagreements reduced interpersonal conflict, aided understanding of 
criticisms and fostered CCs. Meanwhile, the results are also consistent with the view that rude 
disagreements escalated face threats and hindered creation of CCs (Chiu & Khoo, 2003).  

Agreements also yielded fewer CCs, suggesting that students had substantial face 
concerns. Specifically, students' social motives might have inclined them to prefer agreements, 
sometimes reflexively with simple confirmations (Burgoon, Dillman & Stern, 1993; Chiu, 
2001). This result is consistent with that of Chiu and Khoo's (2003) study showing that people 
tend to agree excessively after controlling for correctness of the previous speaker’s idea. In 
these cases, students sacrificed progress in the problem content space for progress in the social 
relational space.  Together, the disagreement and agreement results support the view that using 
politeness theory to modify socio-cognitive conflict theory yields more precise models of 
group problem solving processes (Brown & Levinson, 1987; Piaget, 1985). 
Implications for researchers 

This study modeled conceptual relationships among group processes affecting the 
processes of creating CCs and applied new methods for analyzing them. Due to the small 
number of groups, the data are not necessarily representative of group interactions.  If future 
studies show similar findings, these results have the following implications for researchers, 
teachers, and students.  

There are four implications for researchers. First, CC creation differed mostly due to 
the micro-time context; group and classroom differences accounted for less than 0.1% of the 
CC variance. To model successful and unsuccessful group processes more precisely, 
researchers can focus on group members’ actions, not only on their group or individual 
characteristics. 

Second, group processes often differed across time. Researchers can model group 
processes more accurately by analyzing group processes at various times during an activity.  
Specifically, watersheds (breakpoints) might radically alter group processes, dividing the 
activity into distinct time periods.  Exploratory analyses of these breakpoints suggested three 
major categories that future researchers can elaborate or expand (on-task l off-task transitions, 
insights, or critical errors). Across time periods, relationships among group processes (or 
between group processes and outcomes) might remain the same or change substantially. 

Third, this study highlighted the temporal micro-development of students' interactions 
(Mercer, 2008), showing how the micro-time context influenced group processes. Specifically, 
it showed how sequences of actions and interactions by the three most recent speakers affected 
the problem content space, the social relational space, and the creation of CCs. In addition to an 
activity’s broader macro-context, researchers can develop better understanding of group 
processes by modeling the micro-time contexts and their effects on group processes. 

 Lastly, this study showcased a method for systematic, fine-grained analyses of 
individual or group processes, dynamic multi-level analysis (DMA).  Specifically, DMA 
statistically identified breakpoints (and their respective time periods) and modeled individual 
actions or social interactions over time (Chiu & Khoo, 2005). The breakpoints are watersheds 
that altered group processes, dividing the session into distinct time periods. Meanwhile, the 
relational variables across speaker turns, multi-level Logit/Probit, lag variables, path analyses, 
and serial correlation tests modeled social interactions within micro-contexts of time, as well as 
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both group and time period differences.  Furthermore, DMA modeled explanatory variables at 
the group level, time period level, and speaker turn level simultaneously.  In addition to 
estimating effect sizes and effect durations of explanatory variables, DMA also identified 
differences in effects across groups or across time periods, thereby locating possible moderator 
effects of unexamined variables at the group or time period levels. 
Implications for teachers and students  

The results suggest that teachers can help create classroom cultural practices to 
facilitate desirable group interactions.  Specifically, teachers can promote a mutually respectful, 
supportive, accountable, safe, and reflective classroom culture. When students are mutually 
respectful, supportive, and accountable to one another, they are more likely to answer group 
members’ questions to increase their partially shared understandings.  A safe environment 
reduces students’ concerns over loss of face and aids their free expression of new ideas, 
including wrong ones. Furthermore, an accountable, classroom culture facilitates frequent 
justifications of ideas. As generalized justifications were more beneficial than appeals to 
authority, mathematics teachers can help their students develop mathematics norms of 
discourse so that students can propose, evaluate, and justify their ideas more effectively against 
mathematics standards of reasoning (Balacheff, 1988; Sfard, 2007).  By learning these norms, 
students can develop mathematics eyes to view the world and acquire and communicate 
mathematics' structural relationships more easily (Blanton & Kaput, 2003; Franke, et al, 2007). 

This study also showed that correct evaluations had long-lasting benefits. This result 
suggests that a supportive, accountable, and reflective classroom culture can help students 
evaluate one another's ideas carefully without impulsive confirmations or rude rejections. If the 
above results are supported by future studies, these changes in classroom culture might help 
students realize the potential benefits of cooperative learning.  
Limitations and Future research 
 This study's limitations include its small sample sizes of higher level units (groups, 
schools, countries), limited problem content, setting, and methodological assumptions.  Due to 
the small number of time periods, groups, teachers, and classrooms, the data were not 
necessarily representative of group interactions in classrooms.  Likewise, the results might 
differ across schools or across countries. Furthermore, these students were not accustomed to 
working together in groups, so students with substantial experience working together might 
behave differently.  Likewise, these results might not apply to students who do not know each 
other well (e.g., during the first day of class in a new school). These same students might also 
behave differently during discussions of different mathematics problems (e.g., geometry), let 
alone problems in other subjects like history. Furthermore, these students might behave 
differently in other settings outside of school (e.g., home or playground).    
 DMA relies on two primary assumptions and requires a minimum sample size.  Like 
other regressions, DMA assumes a linear combination of explanatory variables and 
independent, identically distributed residuals.  (Non-linear functions can be modeled as 
individual or multiple explanatory variables, e.g., age2.) DMA also has modest sample size 
requirements.  Green (1991) proposed the following heuristic sample size, N, for a multiple 
regression with M explanatory variables and an expected explained variance R2 of the outcome 
variable: 
 
 N  >  8 * (1 – R2) / R2 + M – 1        (1) 
  
For a large model of 20 explanatory variables with a small expected R2 of 0.10, the required 
sample size is 91 speaker turns (= 8*(1 – 0.10)/0.10 + 20 – 1).  Less data is needed for a larger 
expected R2 or for smaller models. In practice, two groups of students talking for half an hour 
will often yield over 100 speaker turns, sufficient for DMA.  Thus, researchers can analyze 
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seemingly "qualitative" data sets through both qualitative and quantitative methods (e.g., both 
traditional discourse analysis and DMA’s statistical discourse analysis).   
 In addition to addressing the above limitations, future research can use DMA to model 
individual or group processes by asking questions of the form: what affects the likelihood of an 
action at each moment in time?  Consider the following research questions. What sequences of 
recent teacher or student actions facilitate student use of a specific strategy?  What influences 
development of a student's science language use (register) over five lessons? How much do 
these effects differ (if at all) across different people, time periods, artifacts, activities, etc.?   
 In general, one can apply DMA to predict people's behaviors with diverse explanatory 
variables. Researchers can use DMA to examine individual learning/problem solving (e.g., 
with protocol analysis data, Ericsson, 2001). Or, they can examine verbal and non-verbal 
interactions among people (students, teachers, parents, computer avatars, therapists, etc.). 
DMA can be used to predict specific behaviors or their properties (e.g., decisions, gaze, use of 
metacognitive strategies, vocabulary, etc.). Possible predictors include characteristics of the 
following: recent events, the time period, the individual, group members, artifacts (e.g., 
graphs), activity (e.g., discussing a poem), broader contextual factors (e.g., setting), historical 
factors (e.g., notable school events), or interactions among them.   
 Careful preparation is needed to perform a DMA. Before doing a DMA, a researcher 
should clearly delineate outcome variables, explanatory variables, and units of time (e.g., 
speaker turn). Furthermore, the sample size of time units should be sufficient (see Equation 1). 
If coding of variables is needed, the researcher then uses or creates a coding framework to yield 
sufficiently high inter-rater reliability (compute via Krippendorf's alpha). Then, follow the 
procedure in the methods section: (a) estimate breakpoints and time periods, (b) compute the 
variance components to identify the number of levels, (c) add predictors, (e) test for serial 
correlation, and (f) estimate direct and indirect effects in a path analysis. For details and further 
suggestions, see Chiu and Khoo (2005). 
 DMA can be simplified to omit the breakpoint estimation, extended to include multiple 
outcomes, or modified to perform a meta-analysis.  If the data is naturally divided into time 
periods, breakpoint estimation might not be needed (though it could confirm the validity of the 
division of time periods; Chiu & Khoo, 2005).  Also, breakpoint estimation requires only 
specification of the outcome variable and can be done separately without the other DMA 
components (Chiu & Khoo, 2005). Although the current study tested only one outcome 
variable, multiple simultaneous outcome variables can also be modeled by adding the outcome 
variables at the lowest level of the nested data structure (for details, see Goldstein, 1995).  
 DMA can be used to do meta-analyses of DMA studies to test the generality of their 
results.  A DMA meta-analysis combines DMA studies to yield larger samples by adding a 
"studies" variable at the highest level (Goldstein, 1995).  This meta-analysis maintains each 
DMA study's nested level structure (e.g., turns within time periods within groups) to yield 
more precise results (unlike current meta-analyses that use only the effect size). 

Conclusion 
 This study of eighty high school students working on an algebra problem in groups of 
four showed that some group processes facilitated creation of correct ideas (correct 
contributions).  As expected, groups with higher past mathematics grades or proportionately 
more correct contributions were more likely to solve the problem correctly.  Also, watershed 
events separated distinct time periods with many vs. few correct contributions. 
 Recent actions by group members (micro-time contexts) affected the likelihood of a 
correct contribution at a given moment in time. Specifically, wrong contributions, correct 
evaluations, justifications, and polite disagreements increased the likelihood of a correct 
contribution. Students often detected and corrected flaws in wrong contributions to create 
correct contributions.  Correct evaluations had broad effects, increasing the likelihoods of 
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correct contributions, justifications, and subsequent correct evaluations. Justifications 
promoted rational discourse, increasing the likelihood of a subsequent justification and 
reducing the likelihood of a rude disagreement. While justifications had the largest effects, 
correct evaluations had the longest-lasting effects (across three speaker turns).  In contrast, 
asking questions, disagreeing rudely, and agreeing, reduced the likelihood of a correct 
contribution.   
 Some effects differed across groups or across time periods. In groups that successfully 
solved the problem, justifications had larger effects on correct contributions and questions 
were more likely to elicit an explanation. Meanwhile, agreements' and correct evaluations' 
effects on correct contributions differed across time periods. Other variables that showed 
consistent effects across both groups and time periods are candidates for universal effects. 
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Appendix A: Problem, coding, and solutions 
Problem 
You won a cruise from New York to London, but you arrive 5 hours late. So, the ship left 
without you. To catch the ship, you rent a helicopter. The ship travels at 22 miles an hour. The 
helicopter moves at 90 miles an hour. How long will it take you to catch the ship? 
Goal  
Find the time at which the ship and the helicopter are in the same location 
Key problem situation understanding:  
 After 5 hours, both vehicles move simultaneously at their respective speeds 
Solution Score 

Correct answer:       3 points 
 Articulated at least one of the solution methods below:  2 points 
 Articulated the correct goal and problem situation:  1 point 
 None of the above:      0 points 
Solution #1: Write the distance expression for each vehicle and equate them 
 Ship distance  = Helicopter distance 
 Ship speed u ship time  = Helicopter speed u helicopter time 
 22 mph u (T + 5) hours  = 90 mph u T hours 
 22 u T + 110 – 22 u T  = 90 u T – 22 u T  
   110   = 68 u T  
   110 / 68  = 68 u T / 68 
   1.6176  = T 
Solution #2: 
Compute current gap between ship and helicopter, distance ship traveled in 5 hours at 22 mph:
  
  5 hours u 22 mph = 110 miles 
Compute net closing speed, helicopter speed minus ship speed: 
  90 mph – 22 mph = 68 mph 
Obtain time by dividing current gap by net closing speed. 
  110 miles / 68 mph = 1.6176 hours 
Solution #3 
Estimate the additional time needed by iteratively computing the extra time needed for the 
helicopter to travel to the ship's momentary new position.  
 (a) Compute ship movement after 5 hours 
 (b) Compute helicopter time needed to travel that distance 
 (c) Compute distance ship travels in that time 
 Repeat (b) and (c) until the helicopter and the plane are in the same place  
 Ship movement    Helicopter movement 
 22 mph u 5 hours =   110 miles 
     110 miles / 90 mph = 1.22222 hours 
 22 mph u 1.222 hours =  26.8888 miles 
     26.8888 miles / 90 mph = 0.29876 hours 
 22 mph u 0.29876 hours =  6.57273 miles 
     6.57273 miles / 90 mph = 0.07303 hours 
 And so on …      

Time  = 1.22222 + .29876 + .07303 + … = 1.6176 hours 
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Appendix B: Coding Speaking Turns 
In the case of overlapping speech/nonverbal behaviors, the interrupter's 

speech/behavior is coded as a separate turn after the interrupted person. Let's say Ron interrupts 
Ana. If Ana stops talking before Ron stops talking, Ana's turn ends at that point. However, if 
Ana continues speaking through and after Ron stops speaking, then Ana's speech consists of 2 
turns. The first turn ends at the end of Ron's speech, and a second turn begins after Ron's 
speech. 

If there are multiple interrupters, the interrupters' turns are sequenced according to who 
spoke first. If multiple people (say Ada and Ben) begin and end at the same time, we coded the 
speech as follows. Each simultaneous speaker is coded as responding to the previous single 
speaker. 

a) If the simultaneous speakers say the same thing, the following speakers are coded as 
responding to all of these simultaneous speakers and the sum of their properties (such 
as peer status) 
b) If the simultaneous speakers say different things, one of them usually continued 
arguing his/her position after a brief silent pause. Let's say Ada and Ben both speak, 
then Ada keeps talking. The turn order would be Ben, then Ada.  

(In this data of high school students, a third person never spoke after simultaneous disagreeing 
speakers stopped. One of the disagreeing speakers always continued.)  
 
Decision trees for each speaker turn dimension 
 
Evaluation: 
Does the speaker respond to the previous speaker? 
 No, code as unresponsive / ignore 
 Yes, does the speaker fully agree with the previous speaker? 
  Yes, code as agree 
  No, does the speaker disagree with the previous speaker? 
   No, code as neutral   
   Yes, does the speaker redress threats to face? 
    Yes, code as politely disagree 
    No, code as rudely disagree 
 
Actions that redress threats to face during disagreements:  
Hypothetical (if, let's say) 
Indirect responsibility  
Passive verbs (get, have),  
Passive voice (is multiplied) 
Citing other people 
First-person plural pronouns (we, our) 
 
 (Disagreeing with a question rejects it as not useful; e.g. "you're asking the wrong question.") 
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Knowledge content, Validity, and Justification: 
Does the speaker express any mathematics or problem-related information? 
 No, code as null content 
 Yes, is all of this information on the group's log/trace of problem solving? 
   Yes, code as repetition 
   No, code as contribution  
    and write specific information in this group's log 
  Does this information violate any mathematics or problem constraints? 
   Yes, code as incorrect 
   No, code as correct 
  Does the speaker justify his or her idea?  
   Yes, code as justification 
   No, code as no justification 
 
Invitational form 
Do any of the clauses proscribe an action? 

Yes, code as command 
No, is the subject the addressee? 

  No, are any of the clauses in the form of a question? 
   No, code as statement 

Yes, code as question 
Yes, is the verb a modal? 

No, should the described action have been performed, but not done?  
Yes, code as a command 
No, code as a question 

Yes, Is it a Wh- question (who, what, where, why, when, how)? 
Yes, code as an question 
No, is the action feasible? 

Yes, code as a command 
No, code as an question 

Examples        Invitational Form 
1.  Can you do it on the calculator, John?  (John can use a calculator) Command 
2.  Can John do it on the calculator? Question 
3.  Can you do it on the calculator, John?  (John might not know) Question 
4.  I hear someone joking around. (Stop joking) Command 
5.  Is someone joking around? (Stop joking)  Command 
6.  What are you joking about? (Stop joking)  Command 
7.  What are you joking about? (joking is ok in class)   Question 
8.    The board is not erased Command 
9.    Did you erase the board? Command 
10.  Did you erase the board?  (speaker can’t see the board) Question 
 
The invitational form decision tree and the accompanying examples are based on Labov (2001) 
and Tsui (1992). 
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Appendix C .Mathematics Equations underlying the Speaker Turn Analyses 
 

When do CCs occur? 
 To identify distinct time periods, I created a simple univariate time-series model (an 
auto-regressive order 1 model):  
  
 yt = C + E yt�1 + Ht          (2) 
 
The parameter yt indicates the value of the outcome variable y at speaker turn t. The parameter 
yt�1 indicates the value of the outcome variable in the previous turn, and E is its regression 
coefficient, indicating its relationship with the outcome variable in the current turn t. 
Meanwhile, C is a constant and Ht is the residual at turn t. With breakpoints this model becomes:  
 
 yt = C + C2 d2 + C3 d3 + … + Cp dp + E yt�1 + Ht     (3) 
 
The number of time periods is p, and dp is the dummy variable associated with time period p. 
Likewise, Cp is the regression coefficient associated with time period p.   

  The BIC is defined as: 
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where k is the number of estimated parameters, n is the number of observations, and L is the 
value of the log likelihood function using the k estimated parameters. 
Multilevel logit model 

Conceptually, a multi-level Logit model can be divided into its multi-level part and its 
Logit part. Consider a 3-level model with an outcome variable, yijk (CC) at speaker turn i of 
time period j in group k and a Logit link function (F): 

 
yijk

 = E000 + eijk + f0jk + g00k  (5) 
 

Sijk = p (yijk = 1) = F (E000 + f0jk + g00k) � �kjk gfe 0000001
1

����
 E   (6) 

The level-2 variation parameter f0jk represents the deviation of time period j from the overall 
mean while g00k represents the deviation of group k from the overall mean E000. The probability 
(Sijk) that an event (e.g. a CC) occurs at turn i of time period j in group k is determined by the 
expected value of the outcome variable and the Logit link function (F). The level-1 variation, 
eijk, does not contribute to the fixed components and is a random variable only at level-1. So, I 
constrain the variance of eijk to 1 without loss of generality.  

Therefore, the observed outcome variable yijk is: 
 
yijk

 = Sijk + eijkzijk (7) 
 
Ve

2 = 1 (8) 
 
zijk = [ Sijk( 1- Sijk) ]0.5

 (9) 
 
Then, I added a vector of s classroom variables as control variables: classroom 
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identification numbers (S).   
 
Sijk = p (yijk = 1 | S00k, E00s) = F (E0 + E00sS00k + f0jk + g00k)   (10) 
 

I tested whether this set of predictors was significant with a nested hypothesis test (F2 log 
likelihood, Kennedy, 2004).  

Next, I entered a vector of t variables at the group level: correct group solution, mean of 
group members' mathematics grades, mean of group members' peer statuses, variance of group 
members' mathematics grades, and variance of group members' peer statuses (T). 

 
Sijk = p (yijk = 1 | S00k, E00s, T00k, E00t) = F (E0 + E00sS00k + E00tT00k + f0jk + g00k)  (11)  
 

I tested whether this set of predictors was significant with a nested hypothesis test (F2 log 
likelihood, Kennedy, 2004). Then, I tested for interaction effects among pairs of significant 
variables in U. Non-significant variables and interactions were removed from the specification. 

Next, I added u current speaker variables at the speaker turn level: gender, race, 
mathematics grade, peer status, correct evaluation, agree, politely disagree, rudely disagree, 
justify, question and command (U).  

 
Sijk = F(E0 + E00sS00k + E00tT00k + EujkUijk + f0jk + g00k)  (12)  
 
Likewise, I applied the procedure for T to U. Next, I tested if the u speaker turn level 

regression coefficients (Eujk = Eu00 + fujk + gu0k) differed significantly (Goldstein, 1995) at the 
time-period level (fujk z 0?) or group level (gu0k z 0?). If yes, I kept these parameters in the 
model. Otherwise, I removed them. 

Using a vector autoregression (VAR, Hamilton, 1994), I entered lag variables for the 
previous speakers, first lag 1 (indicating the previous turn and denoted -1), then at lag 2 
(denoted -2), then at lag 3, and so on until none of the variables in the last lag were significant 
(lag 4 in this case). First, I added v previous speaker variables at the speaker turn level: gender 
(–1), race (–1), mathematics grade (–1), peer status (–1), correct evaluation (–1), agree (–1), 
politely disagree (–1), rudely disagree (–1), CC (–1), wrong contribution (–1), correct old idea 
(–1), justify (–1), question (–1), and command (–1) (V). 

 
Sijk = F(E0 + E00sS00k + E00tT00k + EujkUijk + EvjkV(i-1)jk + f0jk + g00k)  (13)  
 
Likewise, I applied the procedure for U to V. Then, I repeated the procedure for lags -2, 

-3, and -4 of the variables in V. Like Evjk , the following symbols Ivjk , Jvjk , and Kvjk denote the 
regression coefficient matrices for the variables in V but at lags –2, –3, and –4 respectively. 
 
Sijk = F(E0 +E00sS00k +E00tT00k+EujkUijk + EvjkV(i-1)jk +IvjkV(i-2)jk +JvjkV(i-3)jk +KvjkV(i-4)jk + f0jk + g00k)  

          (14) 
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Appendix D: Correlation Tables and Additional Analyses 
 
Table D1  
Summary of speaker turns coded in successful and unsuccessful groups 
 Groups 
Speaker turns Successful Unsuccessful 
Original            1,372              1,781  
Poor sound quality                  21                   28  
Omitted due to lags                  74                   79  
Total used             1,277              1,674  

 
 
 
Table D2 
Inter-rater reliability of each coding dimension 
Coding dimension Agreement % Krippendorf's alpha 
Evaluation of previous action 96 0.93 
Knowledge content 98 0.98 
Correct idea 99 0.99 
Invitational form 96 0.91 

 
 
 
Table D3 
The following matrix show the correlations, variances, and covariances of the outcome 
variables and the significant predictors at the group level. The lower left triangle of each 
matrix contains the correlations. The bold numbers along the diagonal are the variances, and 
the upper right triangle contains the covariances.  
 Group level variable 1 2 3 
1. Solution score 1.490 5.314 0.142 
2. Group mean mathematics grade 0.658 43.715 0.519 
3. % Correct contributions 0.671 0.453 0.030 
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Table D4 
The following matrix shows the correlations, variances, and covariances of the outcome variables and the significant predictors at the speaker turn 
level. The lower left triangle of each matrix contains the correlations. The bold numbers along the diagonal are the variances, and the upper right 
triangle contains the covariances. 
 Speaker turn variable 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 
1. Correct contribution 0.158 -0.009 -0.002 0.058 0.008 0.035 0.037 0.030 0.010 -0.004 
2. Rude disagreement -0.079 0.087 -0.054 -0.009 -0.009 -0.004 -0.006 -0.003 0.004 -0.005 
3. Agreement -0.020 -0.368 0.246 -0.009 0.002 0.029 0.012 0.019 -0.012 -0.002 
4. Justification 0.412 -0.083 -0.050 0.127 0.025 0.010 0.014 0.003 0.005 -0.004 
5. Justification (lag 1) 0.058 -0.086 0.006 0.193 0.127 0.006 0.009 0.014 0.014 0.001 
6. Correct evaluation (lag 1) 0.195 -0.030 0.127 0.059 0.038 0.210 0.047 0.048 -0.001 0.008 
7. Correct evaluation (lag 2) 0.211 -0.046 0.055 0.093 0.060 0.230 0.208 0.047 0.004 -0.016 
8. Correct evaluation (lag 3) 0.164 -0.021 0.080 0.022 0.091 0.231 0.225 0.209 -0.003 0.001 
9. Wrong contribution (lag 1) 0.093 0.048 -0.090 0.047 0.142 -0.009 0.016 -0.028 0.088 0.000 
10. Question (lag 2) -0.022 -0.043 -0.020 -0.023 -0.001 0.038 -0.079 0.003 0.008 0.184 
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Table D5 
Significant, unstandardized parameter coefficients of hierarchical set multilevel Logit 
regressions predicting correct contributions at the speaker turn level (with standard errors in 
parentheses) 
 6 Multi-level Logit regressions predicting correct contributions  
Predictor Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Unsolved -0.907 * -0.581  -0.526  -0.69  -0.647  -0.43  
 (0.463)  (0.558)  (0.555)  (0.552)  (0.546)  (0.477)  
Rude   -0.970 *** -1.177 *** -1.198 *** -1.238 *** -1.173 *** 
Disagreement   (0.256)  (0.26)  (0.265)  (0.265)  (0.26)  

Agreement   -0.633 *** -0.642 *** -0.647 *** -0.66 *** -0.614 *** 
   (0.131)  (0.131)  (0.134)  (0.133)  (0.123)  
Justification   3.725 *** 3.827 *** 3.803 *** 3.849 *** 3.82 *** 
   (0.276)  (0.276)  (0.277)  (0.276)  (0.284)  
Justification    -1.568 *** -1.651 *** -1.654 *** -1.69 *** -1.685 *** 
 X unsolved   (0.338)  (0.338)  (0.341)  (0.339)  (0.346)  
Lag 1 predictors 
Correct     0.447 *** 0.427 ** 0.402 ** 0.387 * 
 Evaluation     (0.125)  (0.128)  (0.128)  (0.127)  
Wrong      0.928 *** 0.952 *** 0.977 *** 0.984 *** 
 contribution     (0.178)  (0.182)  (0.181)  (0.18)  
Justification      -0.550 ** -0.530 ** -0.555 ** -0.599 ** 
      (0.163)  (0.167)  (0.166)  (0.164)  
Lag 2 predictors 
Correct       0.414 ** 0.387 ** 0.401 ** 
 evaluation        (0.125)  (0.125)  (0.108)  
Question       -0.615 ** -0.613 ** -0.541 * 
       (0.198)  (0.197)  (0.194)  
Question x       1.008 *** 1.002 *** 0.967 ** 
 unsolved       (0.277)  (0.276)  (0.272)  
Lag 3 predictors 
Correct         0.353 * 0.356 * 
 evaluation          (0.127)  (0.126)  
Random variation of predictors at the time period level 
Agreement           0.445 *  
           (0.149)  
Correct           0.555 *** 
 evaluation            (0.135)  
Note. Significant fixed constant term, random time period constant term, and random speaker 
turn constant terms are omitted. 
*p < .05, **p < .01, ***p< .001 
 
 


