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Abstract: It is well established that we can focally attend to a specific region in visual space without shifting
our eyes, so as to extract action-relevant sensory information from covertly attended locations. The underlying
mechanisms that determine how fast we engage our attentional spotlight in visual-search scenarios, however,
remain controversial. One dominant view advocated by perceptual decision-making models holds that the
times taken for focal-attentional selection are mediated by an internal template that biases perceptual coding
and selection decisions exclusively through target-defining feature coding. This notion directly predicts that
search times remain unaffected whether or not participants can anticipate the upcoming distractor context.
Here we tested this hypothesis by employing an illusory-figure localization task that required participants to
search for an invariant target amongst a variable distractor context, which gradually changed—either ran-
domly or predictably—as a function of distractor-target similarity. We observed a graded decrease in internal
focal-attentional selection times—correlated with external behavioral latencies—for distractor contexts of
higher relative to lower similarity to the target. Critically, for low but not intermediate and high distractor-
target similarity, these context-driven effects were cortically and behaviorally amplified when participants
could reliably predict the type of distractors. This interactive pattern demonstrates that search guidance sig-
nals can integrate information about distractor, in addition to target, identities to optimize distractor-target
competition for focal-attentional selection. Hum Brain Mapp 36:935–944, 2015. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

It is well established that we are able to focally attend to
a specific region in visual space even without shifting our
eyes, so as to extract action-relevant information from the
covertly attended location. This ability—first demonstrated
experimentally by Hermann von Helmholtz one and a half
centuries ago—has been metaphorically likened to a move-
able “spotlight” of attention. The behavioral literature on
visual selective attention has provided ample evidence
that participants can shift focal attention to the location of
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an action-relevant object more rapidly as the physical dis-
similarity of the target to the distractor objects increases
[Duncan and Humphreys, 1989; Navalpakkam and Itti,
2007]. However, the precise mechanisms that dynamically
control how fast we engage our attentional spotlight in
visual-search scenarios are, as yet, less well understood.

One dominant view advocated by contemporary percep-
tual decision-making models [Olivers et al., 2011; Wood-
man et al., 2007] holds that focal-attentional selection is
mediated by an internal attentional set, or search template,
that exclusively specifies target-defining features. Accord-
ingly, when participants are required to search for a given
object (e.g., a green apple), these models assume that selec-
tion is guided solely by global biasing of feature analyzers
specialized for coding target-matching properties (e.g.,
color: green; form: circular). The underlying idea is that
location-specific analyzer units accumulate sensory evi-
dence towards an attention shift-initiating criterion [Smith
and Ratcliff, 2004] faster the more precisely a given object
matches the prespecified target template. This is not to say
that these models envisage focal-attentional selection to be
unaffected by distractor information. If distractors are
defined by similar as compared to dissimilar features as
the target, for instance, location-specific analyzers would
likewise accumulate sensory evidence in favor of distrac-
tors—thereby putatively delaying focal-attentional target
selection (for implicit space- and dimension-based cross-
trial biasing of distractor information, see also [Chun and
Jiang, 1998] and [T€ollner et al., 2012a], respectively). In
fact, previous studies examining primate single-cell [Treue
and Mart�ınez Trujillo, 1999] and human hemodynamic
[Egner and Hirsch, 2005] brain activity support this view,
showing that the output of target-coding analyzer units is
amplified when participants attended to the respectively
coded information. However, as these studies contrasted
brain activity between situations in which participants did,
versus did not, attend to one of two types of overlapping
surface information (e.g., red vs. green [Treue and
Mart�ınez Trujillo, 1999], or houses vs. faces [Egner and
Hirsch, 2005]), their explanatory value with regard to
search-guiding mechanisms remains limited.

The current study was designed to explore the role of
the physical stimulus context in the timing of attentional-
spotlight shifts, and whether internal search-guiding sig-
nals can integrate information about distractor (context)—
as well as target—identity for facilitating focal-attentional
target selection. To permit deeper insight into the neural
mechanisms underlying the initiation of context-based
attentional-spotlight shifts, we coupled millisecond-by-
millisecond scalp-recorded voltage fluctuations to mental
chronometry data during an illusory-figure search task.
Participants were instructed to localize (left vs. right dis-
play hemifield) an invariant Kanizsa square [Conci et al.,
2006, 2011; Davis and Driver, 1994], composed of four
inward-facing pacman elements, presented among seven
nontarget configurations, composed either randomly or
predictably of one, two, or three inward-facing (together
with three, two, or one outward-facing) pacman elements
(see Fig. 1). In order to directly assess whether the speed of
attentional-spotlight shifts (i.e., focal-attentional selection)
can be biased by (i) distractor predictability, (ii) distractor-
target similarity, or (iii) a mixture of both, our analyses
focused on a particular waveform of the event-related
potential which is elicited most prominently over parieto-
occipital areas contralateral to the location of an attended
stimulus: the posterior contralateral negativity (PCN),1

which is generated in the ventral occipito-temporal cortex
[Hopf et al., 2002] and is generally accepted to reflect
focal-attentional selection of task-relevant objects in visual
space [Eimer, 1996; T€ollner et al., 2012a; Woodman and
Luck, 1999]. Of note, the speed with which focal attention
is deployed in feature singleton search is independent of

Figure 1.

Examples of search arrays used in the present illusory-figure search tasks. This design allowed us to gradu-

ally manipulate the similarity between target and distractor stimuli—defined in terms of the number (one

vs. two vs. three) of local elements a Kanizsa-square shared with the simultaneously presented distractor

items.

1Traditionally, this potential has been referred to as “N2-posterior-
contralateral” (N2pc). However, recent evidence [Shedden and
Nordgaard, 2001; Wiegand et al., 2013] clearly showed that this wave
is triggered independently—in terms of timing and activation—of
the nonlateralized N2. Thus, to avoid any misleading associations or
interpretations regarding the timing aspect, we follow the suggestion
of Jaskowski et al. [Jaskowski et al., 2002], and others, to use the tem-
porally more neutral label PCN (instead of N2pc).
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the respectively engaged task set, i.e., independent of
whether participants are required to detect, localize, or
identify the target object [T€ollner et al., 2012b].

Following the dominant notion put forward by models of
visual-selective attention [Duncan and Humphreys, 1989;
Olivers et al., 2011; Woodman and Luck, 2007] that focal-
attentional selection is mediated exclusively by target feature-
specifying templates, we should observe gradually decreas-
ing PCN (and, thus, manual reaction) times for distractors of
low relative to intermediate and high similarity to the target,
with no further modulation by the predictability of the dis-
tractor context. By contrast, if search-guiding signals can
additionally integrate information about distractor settings,
we should observe PCN (and, thus, reaction) times that are
speeded further when participants can reliably anticipate the
upcoming distractor identities. For instance, stimulus sur-
round predictability may act on the sensory representations
of the distractors by lowering their impact on the preattentive
competition for selection [Desimone, 1998]. Such an
expectancy-driven downregulation would automatically
translate into a selection advantage for the target, in that suf-
ficient sensory evidence for initiating focal-attentional spot-
light shifts to the target (as reflected by the PCN timing)
would be accumulated sooner. Theoretically, such top-down
controlled distractor predictability effects could determine
neural and/or behavioral response times either additively to
or interactively with stimulus-driven similarity effects.

MATERIALS AND METHODS

Participants

Twelve participants (four female) took part in this study.
Their ages ranged from 20 to 30 (median 25) years. All

had normal or corrected-to-normal vision; none reported a
history of neurological disorder(s). Participants provided
written informed consent and were either paid or received
course credit. The experimental procedure was approved by
the ethics committee of the Department of Psychology, Uni-
versity of Munich, in accordance with the Code of Ethics of
the World Medical Association (Declaration of Helsinki).

Stimuli, Task, and Study Design

The search displays (see Fig. 1) consisted of one Kanizsa
square,2 composed of four inward-facing pacman inducers,
among seven nontarget configurations, composed of either
one, two, or three inward-facing (together with three, two,
or one outward facing) pacman elements. On each trial,
target and nontarget configurations (radius: 1.2� of visual
angle) were presented in grey (1.83 cd/m2) and arranged
around the circumference of an imagery circle (of radius
3.0�) around a central white fixation cross; the screen

Figure 2.

Behavioral and neural processing times. A: Reaction times separately for nonpredictive (light

grey lines) and predictive distractor surrounds (dark grey lines), as a function of distractor-target

similarity. B: PCN times separately for nonpredictive (light grey lines) and predictive distractor

surrounds (dark grey lines), as a function of distractor-target similarity.

2We deliberately used Kanizsa squares because they allow for a
clean, graded manipulation of distractor-target similarity, defined in
terms of the number of local pacman elements (1 vs. 2 vs. 3) target
and distractors could share. Arguably, using “simpler” stimulus set-
tings might actually make it more difficult to examine distractor-
target similarity in a non-confounded manner. For instance,
symmetry-associated factors play a role in orientation search, where,
e.g., horizontal targets presented amongst vertical distractors yield
slower RTs than targets of only 67� tilt, even though the former are
physically more dissimilar to the distractors. In color search, simi-
larly, there would be varying contributions of the chromatic cone-
opponent channels and the luminance channels to mid- and high-
level processing of different colors [Jennings and Martinovic, 2014],
providing a source of confounds.
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background was black (0.02 cd/m2). Configurations were
spaced equidistantly, with the target presented randomly
at one of the six lateral positions. Participants were
instructed to maintain central eye fixation throughout the
experimental trials, and to make a 2-alternative forced-
choice response, as fast and accurately as possible, indicat-
ing the target side (left vs. right positioning relative to the
vertex of the search array) by pressing the spatially con-
gruent mouse button with their left or right thumb,
respectively.

Two distinct distractor predictability conditions (nonpre-
dictive vs. predictive) were performed consecutively in a
dimly lit, sound-attenuated, and electrically shielded
experimental chamber (IAC), with the order of the two
conditions counterbalanced across participants. Search dis-
plays were presented on a 17" computer screen, mounted
at a viewing distance of approximately 75 cm. Each condi-
tion consisted of 12 blocks of 72 trials each, resulting in a
total of 1,728 trials. In the nonpredictive condition,
distractor-target similarity varied randomly on a trial-by-
trial basis throughout all 12 blocks. By contrast, the predic-
tive condition was divided into three sessions consisting of
four blocks each, with each session presenting one of three
different distractor-target similarity conditions (see above);
participants were informed of the respective level of
distractor-target similarity at the start of each session. The
order of the three sessions within the predictive condition
was counterbalanced across participants. A trial started
with the presentation of a white central fixation cross for
500 ms, which was immediately followed by the search
array shown for 200 ms. Trials were terminated by the par-
ticipant’s response or after a maximum time limit of 1000
ms. In case of a response error, or if no response was given
within the maximum time window allowed, the word
“FEHLER” (German word for “ERROR”) was centrally pre-
sented for 1 s. The subsequent intertrial interval displayed a
white central fixation cross for a randomly chosen duration
of either 0.95, 1, or 1.05 s. Prior to the start of each of the two
conditions, at least one block of practice was administered
in order for participants to become familiarized with the
stimulus material. After each block, participants received
summary performance statistics (mean error rate and reac-
tion time) as feedback information.

EEG Recording and Data Analysis

The electroencephalogram (EEG) was continuously
sampled at 1 kHz using Ag/AgCl active electrodes (acti-
CAP system; Brain Products Munich) from 64 scalp sites,
which were in accord with the international 10-10 System.
To monitor for blinks and eye movements, the electroocu-
logram was recorded by means of electrodes placed at the
outer canthi of the eyes and, respectively, the superior and
inferior orbits. All electrophysiological signals were ampli-
fied using BrainAmp amplifiers (BrainProducts, Munich)
with a 0.1–250 Hz bandpass filter. During data acquisition,

all electrodes were referenced to FCz, and re-referenced
off-line to averaged mastoids. All electrode impedances
were kept below 5 kX.

Prior to segmenting the EEGs, the raw data was visually
inspected in order to manually remove nonstereotypical
noise; subsequently, the data were band-pass filtered using
a 0.5–30 Hz Butterworth IIR filter (24 dB/Oct). Next, an
infomax-independent component analysis was run to iden-
tify components representing blinks and horizontal eye
movements, and to remove these artifacts before back-
projection of the residual components. For the PCN analy-
ses, the continuous EEG was then epoched into 500-ms
segments relative to a 200-ms prestimulus interval, used
for baseline correction. Only trials with correct responses
and without artifacts—defined as any signal exceeding
660 mV, bursts of electromyographic activity (as defined
by voltage steps/sampling point larger than 50 mV) and
activity lower than 0.5 mV within intervals of 500 ms (indi-
cating dead channels)—were accepted for further analysis
on an individual-channel basis before averaging the event-
related potential (ERP) waves. To extract the PCN from
overlapping target selection-unspecific components, ERPs
from parieto-occipital electrodes (PO7/8) ipsilateral to the
target’s location were subtracted from contralateral ERPs.
The latencies of the PCN were defined individually as the
maximum negatively directed deflection in the time range
150–350 ms post-stimulus. PCN amplitudes were com-
puted averaging five sample points before and after the
maximum deflection.

Differences in behavioral (reaction times, error rates) as
well as neural measures (PCN latencies/amplitudes) were
assessed by conducting separate two-way repeated-meas-
ures analysis of variance (ANOVA) with the factors
distractor-target similarity (low, intermediate, high) and
distractor predictability (predictable, nonpredictable). Sig-
nificant main effects and/or interactions were further veri-
fied by means of post hoc comparisons (Tukey’s honest
significant difference test).

RESULTS

Behavioral Data

As depicted in Figure 2, we found behavioral perform-
ance to vary markedly as a function of stimulus context:
participants exhibited faster reaction times (RTs)
[F(2,22) 5 139.20, P< 0.001] and produced fewer errors
[F(2,22) 5 83.70, P< 0.001] for targets of higher dissimilar-
ity to the objects in their surround. Importantly, these
stimulus-driven effects interacted with distractor predict-
ability [RTs: F(2,22) 5 31.16, P< 0.001; Errors: F(2,22) 5

4.17, P< 0.029]: reactions were initiated faster and were
less error-prone for targets least similar to distractors (RTs:
366 6 29.4 ms vs. 409 6 40.3 ms, P< 0.001; Errors: 2.0% vs.
4.0%, P< 0.012) but not (or less markedly so) for targets of
intermediate (RTs: 409 6 36.5 ms vs. 433 6 43.5 ms,
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P< 0.021; Errors: 4.6% vs. 4.8%, P> 0.625) and high simi-
larity (RTs: 489 6 51.4 ms vs. 469 6 48.1 ms, P> 0188;
Errors: 14.0% vs. 12.9%, P> 0.287), with predictive relative
to nonpredictive distractor surrounds.

Electrophysiological Data

The corresponding event-related potential waves are
plotted in Figure 3A–C. As can be seen, the rise of the
PCN started earlier [F(2,22) 5 18.34, P< 0.001] and was
boosted [F(2,22) 5 33.11, P< 0.001] for targets that differed
physically more (as compared to differing less) from the
distractors. Of note, this similarity-based decrease in PCN
timing correlated with the speed-up of RTs (r 5 0.579;
P< 0.02; Fig. 3B). Mirroring the RT pattern, these PCN
context effects depended further on distractor predictabil-
ity [interaction latencies: F(2,22) 5 7.29, P< 0.004; interac-
tion amplitudes: F(2,22) 5 3.52, P< 0.047]: in particular, the

significantly fastest and strongest PCN waves were elicited
by targets of low similarity relative to the distractors (266
ms; 22.29 mV), parametrically followed by targets of inter-
mediate (276 ms; 21.68 mV) and high similarity (285 ms;
21.08 mV). Critically, PCN responses elicited by targets of
low similarity rose even earlier (258 vs. 274 ms) and were
amplified further (22.52 mV vs. 22.07 mV) when partici-
pants could anticipate the upcoming stimulus context.
Subsequent post hoc comparisons confirmed that the
effects of distractor predictability on the PCN were evident
for targets of low (latencies: P< 0.003; amplitudes:
P< 0.037), but not for targets of intermediate (latencies:
P< 0.277; amplitudes: P< 0.499) and high (latencies:
P< 0.237; amplitudes: P< 0.482), similarity with the
distractors.

To further control for the possibility that these ampli-
tude differences are attributable to variability differences
across conditions, we ran additional analyses on the PCN
width—which, according to this interpretation, should

Figure 3.

Target-synchronized grand-average ERP waveforms of the pres-

ent study. A: ERPs elicited contra- and ipsilateral to the target

location at electrodes PO7/8. B: Correlation between an indi-

vidual’s decrease in reaction and PCN times when responding to

targets of low, relative to high, similarity to the distractors. C:

PCN (contralateral-minus-ipsilateral difference) waves and scalp

distribution maps as a function of distractor-target similarity,

separately for nonpredictive (left panel) and predictive distrac-

tors (right panel). For illustration purposes, the grand-average

waves were low-pass filtered at 12 Hz (24 dB/Oct).
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have been increased for conditions of higher relative to
lower variability. To extract the PCN width for each condi-
tion, we subtracted PCN onsets from PCN offsets (both
determined using the jackknife-based scoring method
[Ulrich and Miller, 2001]) and submitted these difference
values to a repeated-measures ANOVA with the factors
distractor predictability and distractor-target similarity.
The effects of both factors, as well as their interaction,
were far from significance (all Fc values< 0.359), effec-
tively ruling out the possibility that the current PCN
amplitude results were due to variability differences.

Next, we controlled for the possibility that the above
PCN results may have been confounded by simultane-
ously activated motor processes. As is inherent in localiza-
tion task designs, the side of the target (e.g., left position)
was invariably linked to the side of the motor effector (in
the present example: left thumb), so that response produc-
tion processes—as indexed by the Lateralized Readiness
Potential (LRP)—are not automatically cancelled out by
the averaging process. Thus, we plotted the time course of
both PCN and LRP waves simultaneously at electrodes
PO7/8 and C3/4, respectively, together with the corre-
sponding topographical scalp distribution maps for the
three 20-ms time windows before and after the PCN maxi-
mum. As can be seen from the scalp distribution maps in
Figure 4, the rise and the maximum (which was taken for
statistical analyses) of the PCN were triggered independ-
ently of the LRP, which emerged—on average—42 milli-
seconds after the PCN.3 Of note, for the time windows
following the PCN maximum, the topographical maps
suggest that location-specific target information was
directly transferred from visual areas to the corresponding
effector-specific motor areas, in line with the notion that
search-guiding “master map” activity is sufficient to indi-
cate the target’s location [T€ollner et al., 2013].

DISCUSSION

By examining brain electrical activity, the current study
was designed to test a core assumption of contemporary
visual-selective attention models [Duncan and Hum-
phreys, 1989; Olivers et al., 2011; Woodman and Luck,
2007], namely, that attentional sets, or templates, mediate
focal-attentional selection exclusively towards target-
defining feature coding. In line with this influential notion,
we observed a graded decrease in internal focal-attentional
selection times—correlated with external behavioral laten-
cies—with increasing physical difference of an invariant
target relative to its variable distractor surround. Challeng-

ing this influential notion, however, these context-based
effects were behaviorally and cortically amplified for tar-
gets of low, but not (or less markedly so) of intermediate
and high, similarity when participants could reliably pre-
dict the type of distractors. To our knowledge, these find-
ings provide the first demonstration that the times taken
to internally select and overtly respond to an invariant tar-
get are determined by both the predictability of the dis-
tractor context and the physical difference between
distractor and target items in an interactive manner.

Predicting Distractor Contexts in Multilevel

Visual Hierarchies

While this interactive pattern is hard to reconcile with
pure “target template” accounts, these findings can be
readily accommodated by salience summation models [Itti
and Koch, 2001; M€uller et al., 2010; T€ollner et al., 2010;
Wolfe, 1994] that envisage preselective feature contrast
computations to be penetrable by internal, top-down con-
trolled, system settings. According to this type of model,
focal-attentional selection is accomplished at the level of
an overall-saliency map, which is dynamically driven by
the input from dimensionally organized analyzer units
(e.g., for color, shape) that continuously compute the pres-
ence of feature-contrast for all locations in parallel. Once a
master map unit is activated above threshold, focal-
attention is deployed to the location represented by this
unit in a competitive, winner-take-all fashion [Lee et al.,
1999]. Within this architecture, a Kanizsa square produces
stronger feature contrast signals within the shape mod-
ule—based on boundary contour computation and surface
filling-in processes [Conci et al., 2009; Grossberg and Min-
golla, 1985; Mattingley et al., 1997]—if the physical similar-
ity to its surrounding non-square configurations is
decreased. As stronger shape-specific feature contrast sig-
nals translate directly into enhanced saliency signals when
integrated at the master map level,4 the threshold for trig-
gering attentional spotlight shifts is reached earlier [Smith
and Ratcliff, 2004], shortening overall search times. Cru-
cially, master map activations are sufficient to indicate the
presence and/or location (as required by the current task-
set) of a feature contrast signal, but they are agnostic as to
the exact value (e.g., the form: square) that gives rise to
this difference. Precise knowledge about the target’s iden-
tity, by contrast, would require the engagement of addi-
tional, post-selective processes to extract—via recurrent
feedback connections—the respective feature information
[Ahissar and Hochstein, 2004; Lamme and Roelfsema,
2000; T€ollner et al., 2012b].

While the stimulus-driven similarity effects discussed so
far can also be accounted for by templates that accumulate
evidence in favor of a particular target feature (e.g.,

3As illustrated in Figure 4, the descending part of the PCN was tem-
porally overlapping with the LRP maximum. As these waves repre-
sent the average of more than a thousand trials of temporal variance,
however, one can conclude that the time windows following the
PCN maximum represent trials with rather slow response times for
the PCN but (different) trials of intermediate speed for the LRP.

4Note that this notion of salience summation generalizes across
dimensions (see, e.g., [T€ollner et al., 2011]).
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square), this notion cannot explain the expectancy-driven
context effects, which indicate that search guidance signals
must integrate distractor-related information at some stage
before target selection. One possibility of how distractor
information may be exploited to further optimize atten-
tional guidance is by configuring an additional template
that specifies the exact distractor (feature) identities [Hum-
phreys and M€uller, 1993]. Similar to target templates, such
distractor templates may reside in the prefrontal cortex
[Miller et al., 1996; Tomita et al., 1999], modulating—via
feedback connections to lower visual areas—the activity of
neurons that code distractor-related features. Instead of
enhancing neuronal activity in visual cortex, distractor
templates may rather operate via reducing the output of
distractor-coding analyzer units, thereby lowering the
distractor’s impact on the preattentive competition for
selection [Desimone, 1998]. This downregulation
would implicitly affect the strength of suppressive lateral

iso-feature interactions [Beck and Kastner, 2005; Li, 1999]
in favor of the target, so that sufficient sensory evidence
necessary to reach for selecting the target focally—as
reflected by the PCN timing (see below)—may be accumu-
lated faster.

In this regard, a recent study by Beck and Kastner [Beck
and Kastner, 2005] provides insight into how stimulus
similarity modulates competitive interactions in extrastri-
ate areas. The study contrasted hemodynamic brain
responses to pop-out displays, in which a task-irrelevant
item differed redundantly in (both) color and orientation
from three neighboring items, with heterogeneous dis-
plays, in which all four items differed from each other in
these feature dimensions. This contrast revealed that the
presentation of a pop-out item eliminated suppressive sen-
sory interactions in extrastriate areas that typically emerge
from multiple, simultaneously presented stimuli. In the
light of the current results, Beck and Kastner’s pattern of
differential activations between pop-out and heterogene-
ous displays may actually reflect a continuum, rather than
(as they concluded) a present/absent dichotomy, of sen-
sory suppression mechanisms. In other words, suppressive
sensory interactions may be invoked gradually with
increasing similarity among neighboring items but may be
reduced when distractor identity is known in advance.

Moreover, the finding that the benefit deriving from pre-
dictable distractor context decreased with increasing
distractor-target similarity further points to a multiplica-
tive modulation of these interactions [Ayaz and Chance,
2009], with the same top-down factor generating beneficial
effects that scale with physical distractor-target contrast.
This interactive pattern suggests that distractor templates
facilitate search performance only if distractor and target
items are sufficiently distinct from one another (as with
the current distractors of low similarity to the target). If
distractors share 50% or more of the local feature informa-
tion with the target (such as the current distractors of
intermediate and high similarity), by contrast, distractor
templates will fail to successfully suppress distractor
information in lower visual areas. There may be also some
additive cost for operating this context-based top-down
control mechanism, explaining why the observed predict-
ability effect turned, at least numerically, negative (i.e.,
into a cost) for the lowest feature contrast.

Finally, it is worth noting that the present findings are
generally consistent with another class of (conceptual)
models explaining expectancy effects in visual cortex,
known as “predictive coding” [Rao and Ballard, 1999].
This framework assumes likewise a multilevel hierarchy of
visual areas that communicate reciprocally via feedfor-
ward and feedback connections, where feedback signals
carry “predictions” from higher to lower level visual areas,
whereas the feedforward signals project the deviations—
i.e., residual errors—between the predictions and the
actual visual inputs [Summerfield and Egner, 2009]. The
general assumption underlying this framework is that the
brain constantly attempts to avoid the coding of redundant

Figure 4.

Target-synchronized grand-average event-related lateralizations

(ERLs). LRP (upper panel) and PCN waves (lower panel)

obtained by subtracting activity ipsilateral to the side of the

motor effector and, thus, target location from contralateral

activity at electrodes C3/4 and PO7/8, respectively. The inter-

mediate panel shows the corresponding topographical scalp dis-

tribution maps computed by mirroring the contralateral-minus-

ipsilateral difference waves (to obtain symmetrical voltage values

for both hemispheres based on spherical spline interpolation)

for the three 20-ms time intervals before and after the PCN

maximum.
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components of the visual inputs through minimizing the
prediction error. Applied to the present dataset, it would
thus appear that the brain can make use of statistical regu-
larities (in this case: constant distractor identities) only in
the high-salience (i.e., low-similar) target condition. In
other words, the reliability of the prediction error in search
scenarios with predictive distractor surrounds would
depend largely on the physical distinctiveness of the target
relative to the distractors. While this framework could con-
ceivably provide an account of the present data, it does
not specify the neural machinery by which error minimi-
zation may actually be achieved in the current search sce-
nario. Arguably, more work is required to marry the
notion “predictive coding” with mechanistic accounts of
attentional selection in visual search, such as that sketched
above.

The PCN as a Neural Measure of Visual Salience

The finding that PCN waves were gradually increasing
with decreasing distractor-target similarity has important
implications with regard to the nature of the processes
that underlie this component. While the general view
holds that the PCN can be linked to the orienting of focal
attention to task-relevant objects in visual space, there is
an ongoing debate as to the exact mechanisms that give
rise to this potential—whether they reflect target selection
[Eimer, 1996; Luck and Hillyard, 1994], distractor suppres-
sion [Hopf et al., 2002], or a mechanism integrating both
[Hickey et al., 2009; T€ollner et al., 2011]. T€ollner and col-
leagues [T€ollner et al., 2011], for instance, have recently
proposed that the PCN wave may reflect the target’s sali-
ency signal as envisaged by salience summation models
(see above). This proposal was motivated by the observa-
tion that the PCN was gradually shifted in time and
reduced in amplitude for targets of lower, relative to
higher, feature similarity with the distractors. Of note, this
saliency-based activation pattern is complementary to the
current results by demonstrating an identical response
profile in terms of the timing and amplitude of the PCN
when, contrary to the current design, the target was vari-
able within an invariant distractor context. Thus, only when
combining the results of both the previous [T€ollner et al.,
2011] and the current study can one conclude unequivo-
cally that the activations represented by the PCN indicate
the physical difference (i.e., salience) of a given location rel-
ative to its surrounding locations, rather than a particular
feature value that singles out the target from its surround.
Or, put in terms of the saliency map hypothesis [Koch and
Ullman, 1985], salience-based PCN activations are
“featureless” representations because they are agnostic as to
the exact feature (e.g., green) that gave rise to this signal.

This is not to say, however, that the ventral occipito-
temporal cortex (i.e., the neural generator of the PCN,
[Hopf et al., 2002]) is the one-and-only processing level
that codes the conspicuity of objects in the human brain.
Instead, our findings add to the mounting evidence that

visual saliency is represented at numerous levels across
the visual pathways, including the pulvinar [Robinson and
Petersen, 1992], striate cortex [Zhaoping, 2002], extrastriate
cortex [Beck and Kastner, 2005], lateral intraparietal area
[Gottlieb et al., 1998], and the frontal eye fields [Sato et al.,
2003]. In particular, in line with Treue [Treue, 2003] who
argued in favor of a distributed saliency map, our findings
suggest at least three functionally distinct purposes for
which feature-contrast and/or saliency signals may be rep-
resented at different levels in the brain: First, the initial
processing levels—striate and extrastriate visual areas—
encode the presence of feature contrast separately for dis-
tinct feature dimensions (e.g., color, shape), thus providing
the basis for subsequent covert and overt attention shift-
ing. Next, these pre-attentively computed feature contrast
signals are combined into one overall-saliency map at the
subsequent stage—the ventral occipito-temporal cortex—
based on which covert attention shifts can be accom-
plished. Third, the activation landscape on this salience
representation may then be transmitted to a third process-
ing level—the frontal eye fields—whenever focal attention
is to be shifted overtly to the target’s location.

Distractor Templates: Rejecting Single Items

Versus Suppressing Homogenous Contexts

The present idea that search guidance signals are inte-
grating information about distractor settings bears, at first
sight, a close resemblance to the notion put forward by
Woodman and colleagues [Arita et al., 2012; Woodman
and Luck, 2007], namely, that people can configure a
“template-for-rejection.” For example, Woodman and Luck
[Woodman and Luck, 2007] reported decreased RTs when
one of the distractor items matched, versus did not match,
an object concurrently maintained in working memory
(WM). This RT benefit has been taken to suggest that the
contents of WM can be flexibly used to either facilitate or
inhibit processing of matching items, so that participants
may have avoided attending to items matching distractors.
However, the Woodman and Luck study differs critically
from the present one with respect to the stimulus material,
the experimental design and, thus, the interpretation of
the results: First, Woodman and Luck [Woodman and
Luck, 2007] implemented a WM paradigm requiring par-
ticipants to actively maintain a particular item in WM for
subsequent recall, with the critical condition being that
this single item could either match or not match one dis-
tractor item during the intermediate search task. In the
current study, by contrast, participants were asked to
search for a pre-defined invariant target, without being
required to first explicitly memorize, then maintain, and
finally recall any potential distractor items in addition to
the search task. Second, each individual item presented in
the search arrays of Woodman and Luck [Woodman and
Luck, 2007] had the same physical salience (i.e., all six
items were of different colors), making searches inefficient
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and serial. By contrast, there was only one item in the cur-
rent study—the target—that differed from the remaining
homogenous distractor items, yielding efficient and spa-
tially parallel search. Third, the task set (i.e., stimulus-
response mapping rule) used by Woodman and Luck
required precise target identification, whereas the current
task demanded simple target localization.

Finally, it is worth noting that the conclusions drawn by
Woodman and colleagues [Arita et al., 2012; Woodman and
Luck, 2007] were based on behavioral measures only. Thus,
arguably, the manipulation they employed [Woodman and
Luck, 2007] would have affected, in the first instance, the
elicitation of the CDA, but not the PCN, wave. As demon-
strated by Luria and Vogel [Luria and Vogel, 2011], the
amplitudes of this signal become stronger as search diffi-
culty increases, indicating increased demands for postselec-
tive target-matching operations in visual WM when search
is serial [Woodman and Luck, 2007]. Accordingly, the tim-
ing effects reported by Woodman and Luck may originate
from postselective, rather than preattentive, processing
(time) demands to successfully match and/or reject poten-
tial target items in visual WM. The timing effects observed
in the current study, by contrast, stem from a functionally
distinct processing stage, namely, preattentive coding and
the associated times required for triggering attentional spot-
light shifts to the target’s location. In sum, even though
rejecting single items versus suppressing homogenous con-
texts lead both to behavioral RT benefits, the underlying
mechanisms may differ substantially. While the former may
expedite the times for matching candidate target items
and/or rejecting distractor items against the target template
in visual WM, the latter does speed up the times for
directly selecting the target candidate item in visual space.

CONCLUSION

In conclusion, besides identifying a neural correlate of
stimulus context in the human brain, the current findings
provide electrophysiological evidence against the strong
stance that the times taken for focal-attentional selection
are mediated by templates that bias perceptual coding and
selection decisions exclusively through target-defining fea-
ture coding. Instead, our results demonstrate that search
guidance signals can integrate information about distrac-
tor, in addition to target, identities to optimize distractor-
target competition for selection. Whether these distractor
predictability effects level off, or even increase, when peo-
ple are provided with two (or more) rather than just one
distractor-related information in advance remains an open
issue to be addressed in systematic future studies. Another
challenge for the future is to explore whether target and
distractor information is maintained by one-and-the-same
or distinct search templates. This corresponds to the cur-
rently debated questions of how many items can be main-
tained simultaneously by a single attentional template and
whether such target/distractor templates are represented

by the same or different sets of neurons which bias per-
ceptual selection processes. In any case, the present find-
ings disclose a more elevated role of distractor information
in attentional selection than previously thought, with
widespread implications for all major types of psychologi-
cal and neurocognitive paradigms (e.g., attentional blink
[Raymond et al., 1992], change detection task [Vogel et al.,
2005], dual task [T€ollner et al., 2012c], TVA’s whole report
task [Wiegand et al., 2014]) that measure human motor
actions in response to spatially filtered sensory signals.
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