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Abstract Numerous everyday search tasks require humans to
attentionally select and temporally store more than one object
present in the visual environment. Recently, several enumer-
ation studies sought to isolate the mechanisms underlying
multiple object processing by means of electrophysiological
measures, which led to a more fine-grained picture as to which
processing stages are modulated by object numerosity. One
critical limitation that most of these studies share is that they
used stimulus designs in which multiple targets were exclu-
sively defined by the same feature value. Accordingly, it re-
mains an open issue whether these findings generalize to
search scenarios in which multiple targets are physically not
identical. To systematically address this issue, we introduced
three target context conditions in which multiple targets were
defined randomly by (1) the same feature (sF), (2) different
features within the same dimension (dFsD), or (3) different
features across dimensions (dD). Our findings revealed that
participants’ ability to enumerate multiple targets was remark-
ably influenced by inter-target relationships, with fastest re-
sponses for sF trials, slowest responses for dD trials, and re-
sponses of intermediate speed for dFsD trials. Our electro-
physiological analyses disclosed that one source of this

response slowing was feature-based and originated from the
stage of attentional selection (as indexed by PCN waves),
whereas another source was dimension-based and associated
with working memory processes (as indexed by P3b waves).
Overall, our results point to a significant role of physical inter-
target relationships in multiple object processing—a factor
that has been largely neglected in most studies on
enumeration.
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Introduction

Numerous tasks in everyday life require humans to
attentionally select and temporally store multiple relevant ob-
jects present in the visual environment. Enumeration tasks
represent one context for studying how multiple target pro-
cessing is accomplished. In enumeration, fast (approximately,
100 ms/item) and accurate responses are typically found for
up to three to four elements—a phenomenon known as
“subitizing” (Jevons, 1871; Kaufman, Lord, Reese, &
Volkmann, 1949; Mandler & Shebo, 1982; Trick &
Pylyshyn, 1993).

To account for the capacity limitation in subitizing, theo-
rists have proposed the existence of at least two distinct types
of numerosity processing, based on which enumeration of
varying object quantities can be accomplished with varying
precision (Dehaene & Changeux, 1993; Feigenson, Dehaene,
& Spelke, 2004; Piazza, 2010; Pylyshyn, 2001). Fast enumer-
ation of larger sets of objects (n > 4) is assumed to bemediated
by early perceptual processes that provide a coarse represen-
tation of the external world via apprehending, at a glance, the
total number of spatially separable elements. Given its rather
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imprecise nature, this representation may provide the basis for
approximate enumeration. Enumeration of smaller sets of ob-
jects (n < 4), by contrast, is assumed to be realized by an
individuation mechanism that is capable of simultaneously
singling out a limited number of individual items with high
precision. Whereas early proposals argued that object individ-
uation operates separately from attention (Trick & Pylyshyn,
1993), recent work suggests that simultaneous indexing of
relevant items in a scene is tightly linked to attention
(Cavanagh & Alvarez, 2005; Vetter, Butterworth, &
Bahrami, 2008). Indeed, it is widely assumed that individua-
tion is a key function of attention (Cavanagh, 2011). The op-
eration of the capacity-limited, attention-based individuation
mechanism yields a set of relatively stable representations of
the individuated objects, which prevents them from being
recounted, thus affording exact enumeration.

Recent even-related potential (ERP) studies have investi-
gated the individuationmechanism underlying enumeration as
well as the distinction between the two numerosity computa-
tions associated with approximate and exact enumeration
(Ester, Drew, Klee, Vogel, & Awh, 2012; Hyde & Spelke,
2009; Mazza & Caramazza, 2011; Mazza, Pagano, &
Caramazza, 2013; Pagano & Mazza, 2012). Mazza et al.
(2013), for instance, used stimulus arrays that could contain
a varying number of target objects in one visual hemifield,
which appeared either in relative isolation (i.e., no-distractor
condition) or simultaneously with distractor items (i.e.,
distractor condition). Importantly, to maintain sensory balance
across hemifields—a prerequisite for interpreting lateralized
ERPs—the contralateral hemifield displayed always the same
number of (distractor) items. Using this design, Mazza and
colleagues (2013) observed an effect of target numerosity on
both the N1 and the PCN (Posterior-Contralateral-Negativity;
also called N2pc)1 waves in the no-distractor condition, in
which the total number of objects was associated with the
number of target items. By contrast, target numerosity influ-
enced the PCN, but not the N1, in the distractor condition, in
which the overall object number was dissociated from the
number of presented targets. This electrophysiological
dissociation suggests that the neural processes underlying
the PCN waveform—generally assumed to reflect the stage
of attentional selection (Eimer, 1996; Luck & Hillyard, 1994;
Mazza, Turatto, Umilta, & Eimer, 2007; Töllner, Müller, &
Zehetleitner, 2012)—provides the core representation critical

for accomplishing exact enumeration of multiple (i.e., up to
three/four) task-relevant items.

Whereas the study by Mazza et al. (2013) demonstrated
that individuating multiple items can be separated from pro-
cessing of the overall object quantity in the field, it is worth
noting that the majority of ERP studies that have investigated
this issue used stimulus designs in which the targets were
always defined by the same feature value (e.g., the color
red). Thus, it remains an open issue whether multiple object
individuation mechanisms generalize to search situations in
which multiple targets can be defined across different features
that belong to the same (e.g., the colors blue and green) or to
separable dimensions (e.g., the color blue and the shape trian-
gle). Translated into everyday search scenarios, this is equiv-
alent to the question of whether simultaneous attentional se-
lection, for example, of two small green apples in the fruit
market is comparable with attentionally selecting one small,
green apple and one big, orange carrot.

In fact, several influential theories of visual attention would
hypothesize differences in search between intra- and cross-
dimensional targets—albeit, with varying predictions.
According to the Boolean Map Theory (BMT) (Huang,
Treisman, & Pashler, 2007), it should be advantageous simul-
taneously to select physically distinct targets if they are de-
fined across different, compared to within the same, dimen-
sions. This prediction can be derived from the BMT’s explicit
assumption that a single Boolean Map—a representation that
divides the visual scene into two distinct (i.e., selected vs.
nonselected) regions and that mediates access to visual feature
information (for further details, see (Huang & Pashler,
2007)—can represent either only one feature value per dimen-
sion (e.g., the color blue) or independent feature values that
belong to different dimensions (e.g., the color blue and the
shape square). Accordingly, searching for physically different
targets defined across dimensions (e.g., red and square) should
be mediated by a single, simultaneously accessible Boolean
map, whereas searching for physically different targets that
belong to the same dimension (e.g., red and blue) should be
more costly (relative to cross-dimensional search) due to the
requirement to serially create and access multiple Boolean
maps.

The dimension-weighting account (DWA) (Müller, Heller,
& Ziegler, 1995; Müller et al., 2010), by contrast, predicts a
cost for cross- relative to intra-dimensionally defined targets.
In particular, DWA proposes that attentional selection of single-
ton feature targets, and also the performance in subitization
tasks, is based on an attention-guiding master (i.e., overall-
saliency or priority) map, which integrates the outputs of
preattentive feature contrast computations (Itti & Koch, 2001;
Koch & Ullman, 1987) in a dimensionally weighted fashion.
Critically, the DWA further assumes that the total amount of
dimension-specific attentional weight is limited. As a result,
searching for multiple items should be facilitated when all

1 Traditionally, this wave has been referred to as ‘N2-posterior-contralat-
eral’ (N2pc). Recent evidence (e.g., Töllner, Zehetleitner, Gramann, et al.
2011) disclosed, however, that this signal is triggered independently—in
terms of timing and activation—of the non-lateralized N2. To avoid any
misleading associations or interpretations regarding the timing aspect,
thus, we follow the suggestions ofWolber andWascher (2005), andmany
others, to use the temporally more neutral term PCN (instead of N2pc).
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targets are defined within the same dimension, because there is
no need to shift attentional weight across, or divide weight
between, dimensions. Search for cross-dimensional targets, by
contrast, should produce an RTcost, conceivably due to a time-
consuming redistribution of dimensional weights. Accordingly,
to give a correct enumeration response (e.g., two vs. three),
responding on cross-dimensional trials would have to wait until
at least two task-relevant dimensions (e.g., shape and color)
were serially weighted to determine whether they produced
one or more reliable target signals at the master map level
(for further details, see Found & Müller, 1996).

Based on this background, the purpose of the present study
was twofold: First, we aimed to establish the role of the
featural/dimensional relation of spatially separable targets in
the individuation of multiple objects in both distractor and no-
distractor conditions. Second, by linking mental chronometry
data to event-related brain potentials, we aimed to isolate func-
tionally distinct processing stages at which putative feature-
and/or dimension-based control mechanisms may influence
target processing. We employed a paradigm similar to that
recently tested by Mazza et al. (2013): multiple targets oc-
curred randomly in isolation or together with distractor ob-
jects, with all targets randomly defined by the same feature
value (e.g., all cyan), by different feature values within one
dimension (e.g., the colors: cyan, purple, and yellow), or by
different feature values in separate dimensions (e.g., the color:
cyan, the shape: square, and the orientation: vertical).

At the electrophysiological level, we focused our analyses
initially on three ERP waves. To measure the influence of the
featural/dimensional target context on attention-based
individuation/selection mechanisms that allow for exact enu-
meration (Ester et al., 2012; Mazza et al., 2013), we analyzed
the PCN wave. Combining the DWA (Müller et al., 1995;
Töllner, Gramann, Müller, Kiss, & Eimer, 2008) with our
recent proposal that the PCN may represent attentional selec-
tion at the master map level (Töllner, Conci, & Müller, 2015),
we hypothesized that the PCN should be attenuated for cross-
relative to intra-dimensional targets. This prediction can be
derived from the DWA’s explicit notion that the selection/
individuation of multiple items on the master map should take
overall longer and be temporally more variable for cross- rel-
ative to intra-dimensional targets (see above), which would
translate into temporally smeared and, thus, markedly reduced
(averaged) PCN amplitudes. According to BMT (Huang et al.,
2007), by contrast, there should be no PCN difference be-
tween targets defined by identical feature values of the same
dimension and targets defined by different features that belong
to separate dimensions—as both conditions should be repre-
sentable in a single Boolean map. Instead, there should be a
cost for targets defined by different features of the same di-
mension, which may result in alterations of the PCN timing or
amplitude. In addition, we controlled for putative target-
context-induced processing differences arising before and

after the stage of attentional selection via analyzing the N1
wave—indexing perceptual processing of the overall
numerosity of the objects in the field (Mazza & Caramazza,
2015)—and the P3b wave—indexing the transfer of task-
relevant information in working memory (Donchin & Coles,
1988; Polich, 2007; Verleger, Jaśkowski, & Wascher, 2005;
Vogel, Luck, & Shapiro, 1998).

Methods

Participants Sixteen young, healthy volunteers (7 females;
mean age: 24.7 years) recruited from the Ludwig-
Maximilians-University took part in this study for monetary
compensation. All volunteers had normal or corrected-to-
normal vision, and none reported a history of neurological
disorder(s). All volunteers provided written, informed consent
before the start of the experiment. The data of three partici-
pants had to be discarded from the analyses due to excessive
horizontal eye movement artifacts. The experimental protocol
was approved by the ethics committee of the Department of
Psychology, Ludwig-Maximilians-University.

Stimuli, task, and study design All equiluminant, colored-
shape stimuli used in the current study were presented against
a black background and arranged around the circumferences
of two imaginary circles centered on a white fixation cross
(Fig. 1). The two imaginary circles were 4° and 7.5° of visual
angle in radius and were made up of 8 (inner circle) and 12
(outer circle) equidistantly placed stimulus locations, respec-
tively. Each stimulus outline contained a grating—composed
of three black bars (0.4° × 2.4°) separated by two gaps (0.3° ×
2.4°)—that were oriented horizontally for all but the orienta-
tion target stimuli (see below). In the “distractor” condition, all
20 stimulus locations were occupied such that 2 or 3 locations
in one visual hemifield contained target items, and the remain-
ing 18 or 17 locations distractor items. In the “no-distractor”
condition, the two or three targets were presented in relative
isolation (i.e., without ipsilateral distractors) in one visual
hemifield, whereas the opposite hemifield contained the same
amount of (distractor) objects. Note that this bilateral stimula-
tion is required to maintain sensory balance across
hemifields—a prerequisite for analyzing lateralized ERPs.

On a given trial, targets were randomly defined relative to
homogenous distractor items (i.e., blue, horizontally oriented
circles; 1.2° of visual angle in radius; CIE: 0.143, 0.068, 4) in
the color, shape, or orientation dimension. For color targets,
we used horizontally oriented circles (1.2° of visual angle in
radius) appearing in cyan (CIE: 0.208, 0.305, 4), purple (CIE:
0.294, 0.158, 4), or yellow (CIE: 0.422, 0.496, 4). For shape
targets, we used blue (CIE: 0.143, 0.068, 4), horizontally ori-
ented squares, diamonds, or triangles. For orientation targets,
we used blue circles (1.2° of visual angle in radius; CIE:
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0.143, 0.068, 4) that were oriented 45°, 90°, or 135° relative to
the horizontal. There were three “target context” conditions
defining how the two or three targets could relate to one an-
other in a given trial: the same feature condition (sF; all targets
were defined by the same feature; e.g., 3 cyan targets), the
different feature condition (dFsD; all targets were defined by
different features within the same dimensions; e.g., 1 cyan,
purple, and yellow target), and the different dimension condi-
tion (dD; all targets were defined by different features across
dimensions; e.g., 1 cyan, square, and vertical target). The
exact number of targets (i.e., set size), lateral target locations,
target-defining features, (ipsilateral, intermingled) distractor
items, and target contexts were randomized on a trial-by-trial
basis. For all trials, it was ensured that at least one target was
assigned to both the inner and to the outer (imaginary) circle.
For set size 3, we arranged search arrays such that the third
target was always assigned to the outer circle, with at least one
distractor placed between any two targets of the outer circle.

The experiment was conducted in a dimly lit, sound-attenu-
ated, and electrically shielded experimental booth. Participants
were seated comfortably at a viewing distance of approximately
57 cm from a 17-in computer screen (1024 × 768 pixel screen
resolution, 85-Hz refresh rate). Each experiment consisted of 24
blocks of 81 trials each (36 distractor trials, 36 no-distractor
trials, 9 catch trials; see below), resulting in a total of 1,944 trials.
A trial started with the presentation of a white central fixation
cross for 0.5 s, followed by the search array for 0.2 s. Trials were
terminated by the participant’s response or after a maximum
duration of 1.5 s. In case of errors, or if no response was made
within the maximum allowed time window of 1.5 s, a red minus
symbol appeared centrally for 1 s. Subsequently, the intertrial
interval lasted randomly for 0.95, 1.00, or 1.05 s. Participants

were instructed to maintain central eye fixation throughout the
trial blocks and to report as fast and accurately as possible the
number of targets—two vs. three—present in the search array.
Notably, in the no-distractor condition, it is theoretically possible
to provide the correct target numerosity via counting the
distractor number, or via relying on the total number of objects
(and matching, for instance, lower vs. higher overall numerosity
to set sizes two vs. three). To prevent such strategies, we pre-
sented catch trials on 20 % of all no-distractor trials with
mismatching target and distractor numerosity. Responses were
given by pressing the left/right mouse button using the left/right
thumb, respectively. Half of the participants started with using
their left/right thumb to indicate the presence of two/three targets
and vice versa for the other half. Stimulus-response (S-R) as-
signments were reversed after the first half of the experiment
(i.e., after 12 blocks). To become familiar with the respective
S-R mappings, participants performed one practice block before
the start of the experiment. After each block, participants re-
ceived summary performance statistics (mean response time
and accuracy).

It is worth noting that the reduction of the number of pos-
sible targets from four in the Mazza et al. (2013) study to two
possible targets in the current study was necessary for the
following reasons: First, discarding set size “4”was motivated
by the findings of Ester et al. (2012; see also Mazza et al.,
2013), who showed that the PCN amplitude increases mono-
tonically from set size 1 up to set size 3. Between set sizes 4-
10, however, the PCN wave reaches a stable asymptote with-
out any further amplification, in line with the subitizing effect
(Trick & Pylyshyn, 1993). Second, given that the main pur-
pose of the current study was to investigate the role of featural/
dimensional relations between targets, there was no

Fig. 1 Search displays used in the present study. Displays contained two
or three targets in one visual hemifield, which were randomly defined by
the same feature (sF), different features within dimensions (dFsD), or
different features across dimensions (dD). For sF and dFsD trials, the
respective target-defining features were selected randomly from the
color, shape, or orientation dimension. Participants performed a two-

alternative-forced-choice (2-AFC) task, enumerating as fast and
accurate as possible the number of targets (2 vs. 3) present on the
screen. Set size (2 or 3), target context (sF or dFsD or dD), distractor
context (present or absent), and target locations were randomized on a
trial-by-trial basis. Note that the actual background color was black and
the fixation cross was white
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justification to keep set size 1. As a consequence, only set sizes
2 and 3 were used. Moreover, using two set sizes permits the
engagement of a two-alternative-forced-choice (2-AFC) task,
making the present study more comparable to most visual search
studies, in which participants are typically required to make
speeded 2-AFC responses—e.g., target localization or identifica-
tion (Töllner, Conci, Rusch, & Müller, 2013). Most importantly,
the reduction of set sizes provided the basis—in terms of trial
numbers per condition—for running adequate ERL analyses for
all conditions.

EEG recording and data analysis We recorded the EEG
continuously at 1 kHz from 64 Ag/AgCl active electrodes
(actiCAP system, Brain Products). Sixty-three electrodes were
mounted on an elastic cap (Falk Minow Service) with positions
matching the international 10-10 system, and one electrode was
placed at the inferior orbit below the left eye to record the
electrooculogram to improve the monitoring of blinks and eye
movements. BrainAmp DC amplifiers (Brain Products) were
used for amplifying all electrophysiological signals with a 0.1-
250 Hz bandpass filter. FCz was used as online reference. The
impedances of all electrodes were kept below 5 kΩ and regu-
larly controlled every 4 blocks.

The raw data of all participants was first visually inspected to
detect and manually remove nonstereotypic noise (e.g., exces-
sive electromyographic bursts). This was followed by running
an infomax independent component analysis, based on which
components representing blinks and/or saccades were identified
and subsequently removed before back-projection of the residual
components. The continuous EEG was then low-pass filtered
using a Butterworth infinite impulse response filter at 30 Hz
(24 dB per octave) and re-referenced to averaged mastoids
(TP9/10). In the next step, the EEGdata were segmented accord-
ing to the 12 (set size × distractor context × target context)
experimental conditions. Segments ranged from 0.2 s before to
0.8 s after the stimulus, with the prestimulus interval used for
baseline correction. Trials with incorrect responses (average:
4.5 % of all trials; worst participant: 7.7 %), anomalously slow
responses (slower than 1.2 s; average: 4.7 % of all trials; worst
participant: 13.9 %), or signals exceeding ± 30 μV in channels
F9/10 (average: 3.8 % of all trials; worst participant: 11.0 %)
were discarded. Artifacts—defined as signals exceeding ±
60 μV, signal changes larger than 50 μV between two sample
points, and signal changes lower than 0.5 μV within 0.5 s inter-
vals—were discarded on an individual-channel basis before
ERP averaging. To isolate the PCN from overlapping,
nonlateralized components, we subtracted the ERPs ipsilateral
to the target side from contralateral ERPs.

The latencies of the N1 and the PCN (difference) waves were
defined individually as the maximum negatively directed deflec-
tion in the time windows 100-250 ms and, respectively, 150-
350 ms poststimulus at the components’ most typical electrode
sites PO7/8. The amplitudes of both waves were computed by

averaging ten sample points before and after the components’
maximal deflection. Given that there is typically no distinct peak
discernable for P3b waves, we calculated mean amplitudes for
the time window 390-650 ms poststimulus, which was derived
from visual inspection of the grand-average waveforms of all
conditions at Pz. Differences in behavioral measures (reaction
times, error rates), PCN latencies/amplitudes, and P3b ampli-
tudes were assessed by performing separate three-way repeat-
ed-measures analyses of variance (ANOVAs) with the factors
set size (2 vs. 3), distractor context (present vs. absent), and target
context (same feature vs. different feature vs. different dimen-
sion). For (P1 and) N1 latencies/amplitudes analyses, the
ANOVAs contained one additional factor—Electrode Side
(PO7 vs. PO8)—to control for hemisphere-specific differences
in early sensory potentials. Where appropriate, significant differ-
ences were further verified by means of post-hoc comparisons.

Results

Behavioral data As shown in Fig. 2, the processing time
required for accurate target enumeration was markedly influ-
enced by target context [F(2,24) = 37.75, p < 0.001]; reactions
were overall fastest for sF trials (657ms [±91]), slowest for dD
trials (756 ms [±127]), and of intermediate speed for dFsD
trials (700 ms [±100]). In addition, we found both target con-
text × distractor context [F(2,24) = 5.17, p < 0.014] and target
context × set size [F(2,24) = 6.97, p < 0.004] interactions to be
significant. In detail, for sF (but not dFsD and dD) targets,
reactions were speeded for no-distractor relative to distractor
trials (644 ms [±92] vs. 672 ms [±90]; p < 0.014; Fig. 2a). For
dD (but not sF and dFsD) targets, RTs were delayed for higher
relative to lower set sizes (766 ms [±124] vs. 745 ms [±130]; p
< 0.047; Fig. 2b). The ANOVA on the error rates revealed all
main effects to be significant (distractor context: [F(1,12) =
13.06, p < 0.004]; set size: [F(1,12) = 34.32, p < 0.001]; target
context: [F(2,24) = 7.04, p < 0.004]), indicative of more error-
prone responding on distractor relative to no-distractor trials
(5.4% vs. 3.6%), with higher relative to lower set sizes (5.8%
vs. 3.2 %), and for dFsD (4.8 %) and dD (5.2 %) relative to sF
targets (3.4 %). None of the interactions reached significance
for the error rates (all p > 0.12).

Early sensory ERPs Figure 3 displays the early sensory com-
ponents as a function of distractor context and set size at
channels PO7 and PO8. For the N1 amplitudes, only the main
effect of distractor context [F(1,12) = 18.00, p < 0.001]
reached significance, with higher amplitudes for no-
distractor (−7.99 μV) relative to distractor trials (−6.57 μV).
For the N1 latencies, the ANOVA revealed the main effect of
set size [F(1,12) = 19.06, p < 0.001] as well as the interaction
of set size with distractor context [F(1,12) = 9.96, p < 0.008] to
be significant. Replicating the results of Mazza et al. (2013),
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we found shorter N1 latencies for higher relative to lower set
sizes on no-distractor trials (172 vs. 178 ms p < 0.001), where-
as the latencies were equivalent for the two set size conditions
on distractor trials (both: 172 ms; p > 0.64).

However, as noticeable in Fig. 3, the differences reported in
the N1 might simply be the consequence of a similar activation
pattern evident already in the preceding P1. To control for this
possibility, we additionally analyzed the P1 amplitudes and la-
tencies. As before, we determined P1 amplitudes individually by
averaging ten sample points before and after the maximum pos-
itively directed deflection (within the 80-140 time windows post-
stimulus at channels PO7/8), with the point of the maximum
deflection defining the component’s latency. These analyses con-
firmed the P1 pattern observable in Fig. 3: The P1 amplitudes
were significantly enhanced [F(1,12) = 5.14, p < 0.043] for

distractor (3.02 μV) compared with no-distractor trials
(2.48 μV). In addition, the P1 latencies showed a main effect
of set size [F(1,12) = 6.14, p < 0.029] as well as an interaction
between distractor context and set size [F(1,12) = 17.64, p <
0.001]. Mirroring the chronological order in the N1, the P1 was
triggered faster for higher relative to lower set sizes on no-
distractor trials (109 vs. 113 ms; p < 0.001), whereas there was
no set size modulation on distractor trials (both: 111 ms; p >
0.81).

PCN The contralateral-minus-ipsilateral PCN difference
waves are plotted in Fig. 4. The rise of the PCN was boosted
[F(2,24) = 14.52, p < 0.001] for targets defined by identical
feature values relative to targets defined by distinct features
both within (−2.36 vs. −1.91 μV; p < 0.002) and across

Fig. 3 P1 and N1 results. Grand-average, target-synchronized event-
related potential waves elicited by no-distractor (turquoise lines) and
distractor displays (purple lines) in the 300-ms interval following
stimulus onset at channels PO7 (left panel) and PO8 (right panel). Scalp

distribution maps (central panel) are shown separately for P1 and N1
waves at the point in time at which the components reached their
maximum—positive and, respectively, negative—deflections

Fig. 2 Behavioral processing times. (a) Reaction times as a function of
target context (same Feature, different Feature-same Dimension, different
Dimension) and set size (2, 3). (b) Reaction times as a function of target

context (same Feature, different Feature-same Dimension, different
Dimension) and distractor context (present, absent)
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dimensions (−2.36 vs. −1.82 μV; p < 0.001), with no differ-
ence between dFsD and dD trials (p > 0.36). Furthermore, the
effects of set size [F(1,12) = 44.93, p < 0.001] and distractor
context [F(1,12) = 14.22, p < 0.003] reached significance,
indicating overall larger PCN amplitudes for higher relative
to lower set sizes (−2.35 vs. −1.71 μV) and for distractor
relative to no-distractor trials (−2.38 vs. −1.68 μV). PCN la-
tencies were statistically influenced by set size [F(1,12) =
5.02, p < 0.045] and distractor context [F(1,12) = 5.43, p <
0.038]; with PCN waves triggered faster for lower relative to
higher set sizes (263 vs. 269 ms) and for no-distractor relative
to distractor trials (260 vs. 272 ms). There were no significant
interactions (all p-values > 0.18).2

P3b As illustrated in Fig. 5, all target displays elicited a clear
P3b wave over parietal midline electrode sites. The ANOVA
on the mean amplitudes revealed all main effects [set size: F(1,
12) = 14.73, p < 0.002; distractor context: F(1,12) = 12.70, p <
0.004; target context: F(2,24) = 41.88, p < 0.001] as well as
the three-way interaction [F(2,24) = 5.00, p < 0.015] to be
significant. To further resolve the three-way interaction, we
conducted follow-up ANOVAs with the factors target context
and set size separately for distractor and no-distractor trials.
These analyses revealed bothmain effects [target context: F(2,
24) = 35.82, p < 0.001; set size: F(1,12) = 12.23, p < 0.004]
and their interaction [F(2,24) = 4.15, p < 0.028] to be signif-
icant for no-distractor trials. For distractor trials, by contrast,
only the main effects [target context: F(2,24) = 31.71, p <
0.001; set size: F(1,12) = 10.36, p < 0.007] but not their
interaction [F(2,24) = 1.45, p > 0.26] reached signifi-
cance. In detail, there was a strong influence of target
context on the P3b in both distractor and no-distractor
trials (Fig. 5b): amplitudes were significantly largest for
sF trials (7.55 μV), smallest for dD trials (4.87 μV), and
of intermediate magnitude for dFsD trials (6.11 μV).
Additionally, on distractor trials, P3b amplitudes were fur-
ther amplified with higher relative to lower set sizes for
all three target context conditions (all p < 0.023). For no-
distractor trials, however, this set size modulation of the
P3b was statistically evident for sF (p < 0.003) and dFsD
(p < 0.023) but not for dD (p > 0.078), targets.

2 As further indicated by the ERL waves shown in Fig. 4, there was an
additional positive-going deflection elicited during the P1/N1 time win-
dow. Given that this positivity—typically referred to as Positivity poste-
rior contralateral (Ppc) and associated with a location-specific inhibition
process (e.g., Gokce et al., 2014)—occurred temporally before the PCN,
it is conceivable that any PCN differences were driven and/or confounded
by systematic Ppc variations. To control for this possibility, we conducted
additional analyses on the Ppc. As for all other early sensory ERP anal-
yses, we averaged ten sample points before and after the component’s
maximum deflection (in the 100–250 ms post-stimulus) and analyzed
them by a repeated-measures ANOVAwith the factors set size, distractor
context, and target context. Of note, this ANOVA revealed no significant
main effects or interactions (all p-values > 0.22)—ruling out systematic
lateralizations during the P1/N1 time window, which could have contrib-
uted to the present P1, N1 or PCN differences. (We would like to thank an
anonymous reviewer for suggesting this analysis.)

Fig. 4 PCN results. (a) Grand-average, target-synchronized PCN
(contralateral-minus-ipsilateral difference) waves as a function of target
context (sF vs. dFsD vs. dD) in the 400-ms interval following stimulus
onset at channels PO7/8. (b) Main effect of target context on PCN
amplitudes. (c) Topographical map of the PCN scalp distribution

(computed by mirroring the PCN difference waves to obtain
symmetrical values for both hemispheres, using spherical spline
interpolation) at the point in time at which the grand-average difference
between contralateral and ipsilateral activity was maximal
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Discussion

The present study was designed to illuminate the role of
the featural/dimensional relationship between multiple
targets for exact enumeration responses in visual search.
We modified a paradigm recently devised by Mazza
et al. (2013) by introducing three target context condi-
tions: multiple targets on a given trial could be defined
by (1) the same feature, (2) different features within the
same dimension, or (3) different features across dimen-
sions. Our behavioral analyses confirmed a strong influ-
ence of target context on response speed: reactions were
fastest for sF targets, slowest for dD targets, and of
intermediate speed for dFsD targets. This RT pattern rep-
licates one of the groundbreaking studies on “dimension-
al weighting” (Found & Müller, 1996). In Experiment 3
of this study, participants were asked to enumerate the
number of targets presented (3 vs. 4, displayed among
homogeneous background items), with the critical manip-
ulation that targets could belong either to the same or to
two different dimensions. Mirroring the current results,
Found and Müller (1996) found faster RTs when the
targets were intra-dimensionally relative to cross-
dimensionally defined. In their DWA model, Found and
Müller suggested that, in order to decide upon the correct
response in cross-dimensional multitarget (enumeration)
searches, participants would have to sample information
from (i.e., enumerate items in) all, rather than just one,
target-def ining dimensions—yielding prolonged

processing times.3 However, given that this reasoning was
based solely on RT measures, it remained an open question
whether the cross-dimensional RT cost stems from increased
demands to attentionally select multiple targets in visual
space, increased demands to encode multiple targets in work-
ing memory, or a mixture of both.

Attentional selection of multiple targets depends
on feature-based mechanisms

As revealed by our electrophysiological analyses, the effect of
target context started to modulate target processing only after
the completion of the early sensory processing stages. This
conclusion can be drawn from the present P1 and N1 results,
which were sensitive to sensory factors—that is, overall object
numerosity—but not to inter-target relations. The first pro-
cessing level at which multiple target processing was affected
by the featural/dimensional relation of the targets was the
stage of attentional selection (and/or individuation).
Specifically, the PCN was more pronounced when the targets
could be singled out by the same feature value (i.e., the sF
condition) compared with conditions with targets defined by
physically distinct features (i.e., the dFsD and dD conditions).
Going beyond previous observations of PCN waves for

3 It is worth noting that, even though this study found likewise RT inter-
actions including the factor set size, the DWA (as well as the BMT) does
not make explicit assumptions with regard to set size modulations on RTs.

Fig. 5 P3b results. (a) Grand-average, target-synchronized event-related
potential waves as a function of target context (sF vs. dFsD vs. dD) in the
800-ms interval following stimulus onset at channel Pz. (b) Main effect of

target context on P3b amplitudes. (c) Topographical map of the P3b scalp
distribution at the point in time at which the grand-average P3b reached
its maximum deflection
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multiple targets of identical, rather than different, colors
(Mazza & Caramazza, 2012), our findings demonstrate that
at this stage it does not matter whether physically distinct
targets belong to same or different dimensions. The only dif-
ference that does matter at this processing level concerns
whether the targets are physically identical or not.

Of note, this pattern of effects challenges the predictions of
both the BMT (Huang et al., 2007) and the DWA (Müller
et al., 1995, 2010). Based on the explicit assumption that a
single Boolean map can be made up solely of one feature
value per dimension, or independent feature values that be-
long to different dimensions, BMT would have predicted a
difference between dFsD trials relative to both sF and dD
trials, without any difference between the latter. On the other
hand, assuming that attentional target selection is constrained
by dimension-specific weight settings that influence the inte-
gration of feature-contrast signals at the attention-guiding
master map, a strong interpretation of the DWA would have
predicted both sF and dFsD trials to differ from dD trials.
Accordingly, even though both models provide frameworks
accounting for a variety of visual search findings, their explan-
atory reach appears to be limited to single-target searches.

At first glance, the present findings also seem to contradict
the pattern typically reported for redundant target searches. In
this type of task, search performance is contrasted between
conditions in which the response is defined by a single
response-relevant signal (e.g., the color red) or redundantly
by two response-relevant signals (e.g., the color red and the
orientation vertical). The well-established finding is responses
are faster to targets determined by two (or more), rather than just
one, response-relevant target features. Importantly, there is an
additional RT gain (violatingMiller’s, 1982, racemodel inequal-
ity) when dual (nearby) targets are defined across rather than
within dimensions, which has been taken to indicate a
preselective coactivation mechanism modulating target
(overall-) saliency (Krummenacher, Müller, & Heller, 2002).
The view of a perceptual origin of the redundant-signals effect
is further substantiated by recent EEG studies (Krummenacher,
Grubert, Töllner, & Müller, 2014; Töllner, Zehetleitner,
Krummenacher, &Müller, 2011) that—at variance with the cur-
rent study—found faster and enhanced PCN waves for targets
defined across relative to within dimensions. However, as dem-
onstrated byKrummenacher and colleagues (2002), coactivation
between dimensions and associated RT benefits were only evi-
dent when the two target-defining signals occurred at the very
same or spatially directly adjacent locations. In the present study
design, however, the two or three target signals were distributed
randomly across eight spatially separated (i.e., nonidentical) lo-
cations. This variation may account for the difference—in terms
of the behavioral and electrophysiological patterns—between
redundant target searches and the current study.

One alternative mechanism that—in contrast to BMT and
DWA—may account for the present PCN pattern is perceptual

grouping (Beck, 1966; Palmer, 1992; Treisman, 1982; Yantis,
1992). Following her seminal feature-integration theory
(Treisman & Gelade, 1980), Treisman (1982) suggested that
attention may be directed to groups of items, rather than to
single items, when they can be segmented at a preattentive
level. Applied to the present study, it may be the case that
enhanced PCN waves for sF trials may reflect facilitated de-
ployment of attention to targets that can be readily grouped
(on the basis of feature similarity) preattentively compared
with less similar targets for which groupings (if formed at
all) are more fragile. The idea of facilitated attentional selec-
tion for targets that can be grouped based on sharing the same
feature description is consistent with recent proposals that the
PCN may represent a neural measure of visual saliency
(Conci, Töllner, Leszczynski, & Müller, 2011; Töllner,
Conci, et al., 2015; Töllner, Zehetleitner, Gramann, &
Müller, 2011). Specifically, comparing pop-out displays with
varying target saliency, it has been shown that PCN waves
gradually increase with decreasing target-distractor similarity
(Töllner, Zehetleitner, Gramann, et al., 2011). Accordingly,
the increased PCN waves observed for sF trials in the current
study may indicate that the target side of the display was
perceived (or encoded) as perceptually more salient overall
when multiple targets could be preattentively grouped.

Encoding multiple targets in working memory depends
on dimension-based mechanisms

The first stage at which dimension-based processing dynamics
started to alter information processing in the present study was
the level of transferring target information into or from working
memory (WM). This conclusion can be drawn from the activa-
tion pattern of the P3b wave—a neural measure traditionally
associated with WM (Donchin & Coles, 1988; Polich, 2007;
Wiegand et al., 2016)—which was reduced not only for dFsD
relative to sF trials, but even and more markedly, when the
targets belonged to different dimensions (dD trials). Following
one notion according to which the P3b reflects processes related
to WM updating (Vogel & Luck, 2002; Vogel et al., 1998), this
amplitude reduction may indicate a gradual impairment (dD >
dFsD > sF) of transferring multiple targets into WM with in-
creasing featural/dimensional inter-target dissimilarity.

While this post-selective locus of dimension-based pro-
cessing dynamics is not envisaged by BMT and DWA, it ex-
tends and complements a growing body of EEG studies
(Gramann, Töllner, Krummenacher, Eimer, & Müller, 2007;
Rangelov, Töllner, Müller, & Zehetleitner, 2013; Töllner,
Eschmann, Rusch, & Müller, 2014) that likewise observed
dimension-specific modulations arising also at later, WM-
related processing stages. One recent retro-cue study is of
particular relevance in this context (Töllner et al., 2014): iden-
tical to the current task, participants were presented with stim-
ulus arrays consisting of two or three target singletons defined
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in the same or different dimensions. Instead of responding to
them immediately, however, the task required participants to
transfer the targets to WM to decide whether a subsequently
presented retro-cue itemmatched one of the stored (WM) items.
Given that this study was designed to measure the access of
WM representations by means of retro-cue-synchronized EEG
lateralizations, the two or three targets were always bilaterally
distributed. Given this, Töllner et al. (2014) could not analyze
PCN waves in response to target displays, so it remained un-
known whether attentional selection of multiple targets is mod-
ulated by dimensional context. Based on the retro-cue design,
however, it was possible to isolate the process of extracting
target information from WM, with the main finding being that
memory search was more demanding—in terms of enhanced
memory-related ERP waves and behavioral response times—
when the targets were defined across dimensions.

On the basis of these results, we recently introduced the
notion of “dimensional feature bundles” (DFB) (Töllner,
Mink, & Müller, 2015), which extends the well-known, hier-
archically structured feature bundle model (Brady, Konkle, &
Alvarez, 2011) by adding an intermediate, dimension-based
level of WM representations (that connects top-level object
with lower-level feature representations). Accordingly, in-
creased processing times for cross-dimensional (relative to
intra-dimensional) target processing in the retro-cue task can
be explained by the requirement to actively maintain and scan
two (instead of just one) dimensionally organized feature bun-
dles (for further details, see Töllner, Mink, et al., 2015).
Whereas the DFB model was originally devised to explain
RT differences in memory search, in theory, the same
dimension-based processing dynamics also may be at work
in the current paradigm. Following this idea, the present,
dimension-based P3b results may reflect variable processing
demands associated with transferring multiple target informa-
tion from WM to subsequent, response-related stages in
enumeration.4

Conclusions

Three conclusions can be drawn from the present data set: first,
the times taken for exact target enumeration in multiple-target
search rely substantially on the physical relation between the
target items (sF < dFsD < dD)—a factor that has been largely
neglected in most previous studies on enumeration. Second, as
revealed by our EEG analyses, this RTcost is not attributable to a
single information-processing stage. Rather, the target context

modulation originates from at least two functionally distinct
stages: attentional selection and working memory. At the stage
of attentional selection, signal processing varies depending on
whether the to-be-selected items are physically identical (i.e.,
defined by the same feature value) or not—likely attributable to
perceptual groupingmechanisms. At the subsequentWM-related
stage, signal processing is additionally modulated by dimension-
based inter-target relationships—presumably indicating in-
creased processing demands associated with transferring cross-
dimensional (relative to intra-dimensional) target information
from WM to response-related stages. Third, this set of findings
has important implications for the explanatory reach of, at least,
two prominent visual attention models: BMT and DWA. While
both models provide frameworks explaining a wide range of
feature- and dimension-based phenomena in human vision, they
cannot readily account for the present,multiple-target search data
and appear, thus, limited to single-target searches.
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